Neutron lifetime measurement at J-PARC

Takashi Ino Neutron Science Lab., KEK

On behalf of the NOP collaboration

ISINN-20, Alushta, Ukraine, May 21 – 26, 2012

neutron mean life (s)

Big Bang nucleosynthesis

Detect decay electrons in flight

Original work

Kossakowski *et al.*, Nucl. Phys. **A503**, 473 (1989) Grivot *et al.*, NIM B **34**, 127 (1988)

$$\tau_n = 878 \pm 27 \pm 14 \text{ [sec]}$$

 $\Delta \tau_n \sim 1 \text{ [sec]}$

With advanced technologies, such as neutron source, electronics, computer, ...

Neutron lifetime

of decay electrons (detected)

$$N_{\beta} = \varepsilon_{\beta} N \frac{L}{\tau_n \upsilon}$$

of ³He(n,p) events

$$N_{He} = \varepsilon_{He} N \rho \sigma L$$

- N: # of neutrons
- L : fiducial volume (length)
- τ_n : neutron lifetime
- $\boldsymbol{\mathcal{U}}$: neutron velocity
- \mathcal{E}_{β} : electron detection efficiency

$$\tau_{n} = \frac{1}{\rho \sigma \upsilon} \left(\frac{N_{He} / \varepsilon_{He}}{N_{\beta} / \varepsilon_{\beta}} \right)$$

- σ : neutron capture cross section of ³He
- ho : 3 He density
- \mathcal{E}_{He} : ³He(n,p) detection efficiency

 $\sigma v = \text{const.}$

Decay in flight Neutron beam TPC gas

- : detection of decay electrons by TPC (MWPC)
- : chopped into short bunches \rightarrow define neutron position
 - $: {}^{4}\text{He} + \text{CO}^{2} + {}^{3}\text{He}$

Background

: cosmic rays, Compton gammas, scattered neutrons, ...

Neutrino <

Materials and Life Science Facility

50 GeV

PARC

Linac

Hadron Exp. Facility

J-PARC pulsed spallation neutron source

Compared to the ILL cold source peak intensity x 40 time-averaged intensity x 1/4

1 MW (in design) 200 kW – 300 kW (as of 2012) 25 Hz

BL05 at J-PARC

3

High energy direct beam is shut by the beam dump. Only slow neutrons are delivered to the TPC by the supermirror bender.

Time of flight [msec]

Chops into short bunches with short rise and fall times Defines neutron position Reduce gammas from the window

Time projection chamber

30cm x 30cm x 100cm

MWPC w/ field cage 6 mm wire pitch

⁴He: CO₂ = 85:15

⁶LiF liner

pre-amps

DAQ 128ch 65MHz 12bit FADC 1GHz multi-hit TDC E > 200 eV

Chemical synthesis plastic - PEEK (polyetheretherketone) No radioactive contamination \rightarrow minimize gamma background

Signal and background event rates

	220 kW	1 MW
Signal rate	0.1 cps	0.4 cps
\times duty factor (40ms/2.8ms)	1.4 cps	5.7 cps

Background source	Rate		
Natural activity inside TPC	0.1 cps		
Natural activity outside TPC	0.8 cps		
Cosmic rays	0.5 cps		
Neutron gamma (upstream & neighbor)	0.5 cps		
Scattered neutrons inside TPC	0.003 cps		

Systematic uncertainties

$$\tau_{n} = \frac{1}{\rho \sigma \upsilon} \left(\frac{N_{He} / \varepsilon_{He}}{N_{\beta} / \varepsilon_{\beta}} \right)$$

$$\sigma \upsilon = \text{const.}$$

σ : ³ He capt. cross section	0.13%	(5333±7[barn])
ho : ³ He gas density	0.5%	
N ₂ outgassing	0.5%	
Gas temperature	0.2%	
Detection efficiencies	0.1%	
Event selection	< 0.1%	

Statistical error

Beam power	220 kW	1 MW
Signal event rate	0.1 cps	0.4 cps
Stat. error (150 days)	0.8%	0.2%

$$S = N - B$$

$$\Delta S = \sqrt{\Delta N^2 + \Delta B^2}$$

- *S* : signal events proportional to the intensity
- *B* : background events virtually intensity independent

³He events with spin flip chopper

Beta decay candidates

Neutron lifetime?

$$\tau_{n} = \frac{1}{\rho \sigma \upsilon} \left(\frac{N_{He} / \varepsilon_{He}}{N_{\beta} / \varepsilon_{\beta}} \right)$$

 N_{β} : # of decay electrons (detected) N_{He} : # of ^3He events (detected)

 $ho\,$: ${}^{3}\text{He}$ density

- σ : neutron capture cross section of ³He
- $\boldsymbol{\upsilon}$: neutron velocity
- \mathcal{E}_{β} : electron detection efficiency
- \mathcal{E}_{He} : ³He(n,p) detection efficiency

Neutron lifetime?

$$\tau_{n} = \frac{1}{\rho \sigma \upsilon} \left(\frac{N_{He} / \varepsilon_{He}}{N_{\beta} / \varepsilon_{\beta}} \right)$$

 N_{β} : # of decay electrons (detected) N_{He} : # of ^3He events (detected)

 $ho\,$: ³He density

- σ : neutron capture cross section of ³He
- $\boldsymbol{\upsilon}$: neutron velocity
- \mathcal{E}_{β} : electron detection efficiency
- \mathcal{E}_{He} : ³He(n,p) detection efficiency

Hope to show you at ISINN-21!

Improvements

Systematics

- σ : ³He capt. cross section
- ho : ³He gas density
- N₂ outgassing
- Gas temperature
- **Detection efficiencies**
- **Event selection**

 $0.13\% \rightarrow$ new measurement $0.5\% \rightarrow$ improving Q-mass spectrometer $0.5\% \rightarrow$ chamber baking? N₂ filtering ? $0.2\% \rightarrow$ replacing pre-amps $0.1\% \rightarrow$ TPC calibration < 0.1%

Statistics

Backup slides

LiF shield and Li(n, α) events

⁶LiF + Teflon w/ Teflon sheet

1st generation TPC

G10:~0.3 Bq/cc 30 cps

Isotope	²¹² Pb	²¹⁴ Pb	²²⁸ Ac	²¹⁴ Pb	²⁰⁸ TI	²¹⁴ Bi	²¹² Bi	²⁰⁸ TI	²²⁸ Ac	⁴⁰ K	²¹⁴ Bi	Total
Eγ[keV]	239	295	338	352	583	609	727	861	911	1461	1765	
PEEK												<0.001
PPS	0.0016					(0.0028)	0.0080			0.0068		0.016
PS							0.0080					0.008
Alumina						(0.0026)			0.0020			0.002
G10	0.0480	0.0272	0.0424	0.0257	0.0135	0.0201	0.0480	0.0142	0.0412	0.022	0.0267	0.27

Beta decay candidates

Spin flip chopper

Chops into short bunches Defines neutron position Reduce gammas from the window

Supermirror benders at BL05

Polarization Branch

ExperimentBeta decayMirrorMagnetic Supermirror (m=2.8)ConfigurationPolygonal approximation
 $12unit \times 0.262 deg. (R=82m)$ Cross-section40mm × 100mmChannel4chBender Length4.5 m (375mm × 6 × 2)Bending Angle3.14 deg.

Unpolarized-beam Branch

Experiment Mirrors Configuration Curvature Cross-section Channel Bender Length Bending Angle

Scattering Supermirror (m=3) Real Curve 100m 50mm × 40mm 5ch 4.0 m (2.0m × 2) 2.58 deg.

Low Divergence Branch

Experiment Mirrors Configuration Critical Angle Bending Angle

Interferometer

Supermirror (m=3) 2 mirrors 0.95 deg. **3.85 deg.**

J-PARC spallation neutron source

Note

Reaction	Cross section	Q	Е
¹⁴ N(n,p) ¹⁴ C	1.7 b	0.626 MeV	0.58 MeV (proton)
$^{12}C(n,\gamma)$	0.0035	4.95 MeV	1.01 keV (recoil)
¹⁴ N(n,p) ¹⁴ C			

Gas mixture ⁴He : $CO_2 = 85$: 15, 50 kPa – 100 kPa ³He ~ 0.1 Pa or a few ppm Gain 50000

55Fe 5.9keV X-ray dE/E ~ 10%

He ionization energy 25eV

flux at 220kW 16m, 8.6e6 /s/cm2 after SFC, 1.2e6 /s (x4cm2x4%) duty factor 2.8ms/40ms -> 0.1 cps

SFC rise 5cm, min. 15 cm, fall 5cm

pre-amp gain 1.0V/pC noise 1.3mVrms > 200 eV

Background subtraction

- S = N B
- $\Delta S = \sqrt{\Delta N^2 + \Delta B^2}$

- S : proportional to the intensity
- B: virtually intensity independent