A New Spallation Ultracold Neutron Source at RCNP

S. Kawasaki, Y. Masuda, S.C. Jeong, Y. Watanabe KEK K. Hatanaka, R. Matsumiya RCNP K. Matsuta, M. Mihara Osaka University

contents

- UCN Production with Super-fluid Helium
- Current UCN Source at RCNP
 - Storage lifetime
 - UCN density
- Next UCN Source at RCNP
 - Horizontal extraction
 - Large heat exchanger
- Summary and Future Plan

Ultra Cold Neutron

Ultra Cold Neutron energy ~ 100 neV velocity ~ 5 m/s wave length ~ 50 nm

Interaction

 $\begin{array}{ll} gravity & 100 \ neV/m \\ magnetic force & 60 \ neV/T \\ Weak interaction \\ \beta \ decay & n \rightarrow p + e \\ Strong interaction \\ Fermi \ potential \ 335 \ neV \ (58Ni) \end{array}$

 UCN can be confined in material bottle.
 → used for various experiment nEDM, gravity, neutron lifetime, ...

High UCN density is essential

Our UCN Source

UCN Production

Spallation Neutron $\downarrow D_2 O$ Moderator (300K, 20K) Very Cold Neutron $\sim meV$ \downarrow Phonon scattering in He-II Ultra Cold Neutron $\sim 100 neV$

Features

 Spallation Source High cold neutron flux

• Superfluid He for UCN converter Long storage lifetime $T_s = 36 \text{ s}$ at $T_{HeII} = 1.2 \text{ K}$ $T_s = 600 \text{ s}$ at $T_{HeII} = 0.8 \text{ K}$ by phonon up-scattering

important to keep $T_{HeII} < 1K$

UCN Production with Supre-fluid He

Cold neutron excite phonon in super-fluid He and become UCN Free from Liouville's theorem : use large phonon phase space in He-II

neutron dispersion curve

$$\frac{d\sigma}{dE} = 4\pi b^2 \frac{k_f}{k_i} S(q, \hbar \omega)$$

 k_i, k_f : wavenumber
 $S(q, \hbar \omega)$: Dynamic stracture factor

UCN Production rate

$$P(E_u)dE_u = \left[\int \frac{d\Phi(E_i)}{dE} N_{\text{He}} \frac{d\sigma}{dE} (E_i \to E_u)dE_i\right] dE_u$$

$$P = \int p(E_u) dE_u = N_{\text{He}} 4\pi b^2 \left(\frac{\hbar}{m_n}\right)^2 \frac{k_c^3}{3} \left[\int \frac{d\Phi(q)}{dE} S\left(q, \hbar\omega = \frac{\hbar^2 q^2}{2m_n}\right) dq \right]$$

dispersion curve of phonon

M. R. Gibbs, et al J. Low Temp. Phys. 120 (2000) 55

Current UCN Source

UCN source
He-II bottle $\Phi 16 \text{cm}$, L 41 cm, Volume = 8L
Al of 2mm thickness, inner wall coated with nickel
Surrounded by D2O moderator (ice, water)Cryostatkeep He-II the temperature by ³He pumping
³He is pre-cooled by ⁴He pumping
UCN guideUCN guide $\Phi 8.5 \text{ cm}$, L = 3 m
1.25m high from He-II bottle

Flux simulation

Simulated flux and phonon stracture factor

PHITS Simulation

20K D₂O: Free gas model Flux at resonant energy

$$\frac{d\Phi(E_i)}{dE} = 9.3 \times 10^8 \,\mathrm{n/cm^2/meV/s}$$

proton beam : 400MeV × 1µA

$$P = \int p(E_u) dE_u = N_{\text{He}} 4\pi b^2 \left(\frac{\hbar}{m_n}\right)^2 \frac{k_c^3}{3} \left[\int \frac{d\Phi(q)}{dE} S\left(q, \hbar\omega = \frac{\hbar^2 q^2}{2m_n}\right) dq \right]$$

$$N_{\text{H}e} = 2.19 \times 10^{22} \text{ cm}^{-3}$$

 $\sigma = 4\pi b^2 = 1.34 \text{ b}$
 $\hbar^2/m_{\text{n}} = 4.14 \text{ meV/A}$
 $k_c = 0.01 \text{ A}^{-1}$ $V_{\text{Ni}} = 210 \text{ neV}$

Production rate 9 UCN/cm3/s single phonon excitation 14 UCN/cm³/s including multi phonon excitation

UCN Production in 2008

Storage life time measurement Counting UCN after valve opening proton beam : 0.2µA, 100s

UCN is produced and hold in the UCN bottle and guide After time delay UCN valve open

> Storage Lifetime : 47 sec wall loss rate

UCN Production in 2008

UCN Production in 2011

UCN count after valve opening proton beam : $1\mu A \times 40s$

Storage Lifetime : 81 sec

Improvement of bottle surface ✓ Alkali cleaning ✓ baking temperature 140°C

UCN density $15 \rightarrow 26 \text{ UCN/cm}^3$ Ec = 90neV $180 \rightarrow 310 \text{ UCN/cm}^3$ @ UCN bottle

Cooling Power of cryostat

Temperature and Flow rate after proton beam impingement proton beam : 400MeV, 1µA, 1200s Heat load on super fluid He Super fluid film flow thermal radiation etc. is balanced with cooling power of cryostat T = 0.77K

During proton beam impingement extra heat road from neutron-capture γ heating

Extra heat load

- \rightarrow He-II temperature rise up
- \rightarrow ³He temperature rise up
- \rightarrow ³He flow rate rise up
- \rightarrow balance at new point T = 0.83K

UCN Source Improvement

 $\rho_{\rm UCN}$ = Production rate $P \times$ Storage lifetime τ

Year	I _P	T _s	T _{Hell}	Improvement
2002	200nA	14 s	1.2K	
June 2006	1µA	29 s	0.9K	³ He cryostat
Nov. 2006	1µA	34 s	0.8K	Reduce HeII film perimeter (8.5 cm \rightarrow 5 cm)
July 2007	1µA	39 s	0.8K	Remove ³ He contamination
April 2008	1µA	47 s	0.8K	Fomblin coating
Dec. 2009	1µA	61s	0.8K	Alkali cleaning
Feb. 2011	1µA	81s	0.8K	High temperature baking (140°C)

Finally, UCN density 26 UCN/cm³ Ec = 90 neV

New UCN source

 Improvements
 ✓ Horizontal extraction avoid gravity potential
 ✓ D₂O moderator optimization more cold neutron flux
 ✓ Increase volume of He-II bottle more production volume
 ✓ Large heat exchanger keep He-II temperature lower

Horizontal extraction

20K D2O

600

3

Graphite

He-II

WWWIII

Baking heater

Iron

New source

300

500

evacuat

400

Concrete

³He-⁴He

UCN valve 200

600

UCN energy spectrum (Geant 4 simulation)

Current source : vertical extraction Gravity potential 102 neV/m × 1.2 m

New source : horizontal extraction

- Avoid gravity potential
- improve conductance

× 2.5 effective transport

D₂O Moderator

D₂O moderator thickness and position → Optimization × 1.2 times improvement

He-II Cryostat

Summary of improvement

- UCN bottle volume × 1.5
- Increase cold neutron flux ×1.2
- Horizontal extraction × 2.5
 - avoid gravity
 - avoid reflection

total $\times 5$

same proton current

and more proton current

Construction

Hell cryostat finish manufacturing now testing

D₂O moderator and UCN guide

constructed and installed on proton beam line

UCN Polarizer

Collaboration

Summary and Future Plan

- Current UCN source
 - storage life time : 81 s
 - UCN density : 26UCN/cm³ @ E_c = 90 neV
- New UCN Source
 - Horizontal extraction
 - 5 times UCN at the same proton power
 - Polarizer
- Future plan
 - 2013 UCN Production at RCNP
 - 2014 or 2015 Transport to TRIUMF
 - beam power 1 µA

1 μ A @ RCNP \rightarrow 40 μ A @ TRIUMF

Thanks

buck up slide

Super conducting magnet

Material for Polarized UCN Transport

Fermi potential Ni 210neV SUS316 190neV BeCu 168neV SiO₂ 90neV

DLC Coating

- CuBe coated DLC(Diamond Like Carbon)
 - H free DLC
 - Pure C
 - C_6F_6
 - Fermi potential \sim 250neV (depend on density)

H0 = 20mGauss BeCu+DLC(C_6F_6) Spin Holding time ~200sec