

Budapest Research Reactor Multipurpose Utilisation of a Medium Flux Facility

LászlóCSER Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences (Budapest Neutron Centre) Email: cser@mail.kfki.hu

May 2012

Budapest XII, Konkoly Thege út 29-33, KFKI

H-1525 Budapest, Pf. 49. Hungary

Nuclear sciences and neutron research have long traditions in Hungary Great fathers: •WIGNER Jenő •SZILÁRD Leó •HEVESY György •TELLER Ede

Nuclear Rector Facilities in Hungary

BNC

Paks Nuclear Power Plant (4x500 MW-e)
Budapest Research Reactor (KFKI, 10 MW)
Training Reactor at the Budapest TU (0.8 MW)

Research Reactor – Benefit for the society

Support for the energy sector
 Research and radioisotope supply for healthcare
 Materials research for industry, life-sciences, nanotechnology....
 Basic science, methodical research, technology transfer, products...

KFKI campus

Reactor core

225 fuel elements, 36% of ²³⁵U

T ~ 20 K

NEW: Bagira loop

Radial channels

T ~ 320 K

 $\lambda_{\text{max flux}} = 1.2 \text{\AA}$

Transition to 20% enriched fuel (2007-08)

12 operative beam instruments

TOF Measuring Hall

Investigation of objects of cultural heriage PROVENANCE STUDY OF LAPIS LAZULI

- Main mineral: Lazurit / $(Na,Ca)_{7-}$ ₈ $(AI,Si)_{12}O_{24}[(SO_4)CI_2(OH)_2]$
- AIM: Identification of raw materials, provenance of art objects
- PGAA: H, Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe, S, Cl

Fake identification with TOF-ND

Characterisation of raw materials with

Fake identification with PGAA

TOF - Time of Flight Neutron Diffraction

No sample preparation Measurements possibility of large sample Maximum illuminate surface on sample 2.5*10cm² Minimum sample volume 3cm³

http://www.bnc.hu contact: György KÁLI kali@szfki.hu

- ✓ Single and polycrystal structure determination✓ Strain analysis
- ✓Texture analysis
- ✓Phase analysis

The appearance of precipitated cementite in medium and high carbon steel sword blades. In the high carbon content blade the cementite is also present in highly oriented phases.

PGAA – Prompt Gamma Activation Analysis

PGAA facility is built on the external cold neutron beam of 10⁸cm⁻²s⁻¹ The beam size can vary between 5mm²-400mm²

http://www.bnc.hu contact: Zsolt KASZTOVSZKY kzsolt@iki.kfki.hu

 \checkmark Elemental identification is based on the (n, $\gamma)$ reaction

✓ All chemical elements can be measured, with the LOD of 0.1ppm-1000ppm
 ✓ PGAA is extremly sensitive for H, B, CI, Cd, Nd, Sm, Eu and Gd.

 ✓ Spectrum analysis is done by HYPERNET-PC software, using our PGAA library

Characterisation of Prehistoric chipped stone objects

ATOMIC RESOLUTION NEUTRON HOLOGRAPHY

THE PRINCIPLE OF HOLOGRAPHY

Gábor Dénes, 1948, holography:

ολος (all) and γραφειν (write).

OPTICAL CASE

Reference wave: Ae^{i Φ}; Object wave: ae^{i Ψ}

 $U(P) = Ae^{i\Phi} + ae^{i\Psi}$

 $I(P) = |a^{2} + A^{2} + aA[e^{i(\Psi - \Phi)} + e^{-i(\Phi - \Psi)}]|^{2} =$ $= a^{2} + A^{2} + 2aA\cos(\Psi - \Phi)$

ATOMIC LEVEL HOLOGRAPHY

Inside source concept

MATHEMATICAL DESCRIPTION

$$I(\mathbf{k}) = \frac{I_0}{4\pi R^2} \left(1 + \sum_j \chi_j(\mathbf{k}) \right) = \frac{I_0}{4\pi R^2} \left(1 + \chi(\mathbf{k}) \right)$$

Holographic instrument

$$\chi(\vec{k}) = 2\sum_{i} \frac{b_{i}}{r_{i}} \cos(kr_{i} - \vec{k} \cdot \vec{r}_{i})$$

$$\chi(\vec{k}) = 2\sum_{n} \frac{b_{n}}{r_{n}} (\cos(kr_{n} - \vec{k} \cdot \vec{r}_{n}) + \cos(kr_{n} + \vec{k} \cdot \vec{r}_{n})$$

-10

-15

Inside detector SnCd alloy

• Inside source concept

Scattering scheme

$$I_{f}(\bar{k}^{i}, \bar{k}^{f}, \bar{r}_{d}) = \frac{s^{2}(\phi_{0}^{i})}{r_{d}^{2}} \left(1 + \sum_{l=2}^{N} \frac{-b_{i} \exp((\bar{k}^{i} \bar{r}_{n} + k^{i} r_{i}))}{r_{i}}\right) \left(1 + \sum_{l=2}^{N} \frac{-b_{i} \exp((\bar{k}^{i} \bar{r}_{n} - k^{i} r_{i}))}{r_{i}}\right)^{2}$$

$$I_f\left(\bar{k}^i, \bar{k}^f, \bar{r}_d\right) = \frac{s^2(\phi_0^i)}{r_d^2} \left| \left(1 + \chi^i(\bar{k}^i)\right) \left(1 + \chi^f(\bar{k}^f)\right) \right|^2$$

Signal – to - noise ratio increases by a factor of two.

The "parasitic" components appears in second order

PdH

а

b

С

d

Polycrystalline sample

$$I(\bar{k}) = \frac{I_o}{R^2} \left(1 + \sum_{j=1}^n \frac{-2b_j}{r_j} \cos(kr_j - \bar{k}\bar{r}_j) + \left| \sum_{j=1}^n \frac{-b_j}{r_j} \exp(kr_j - \bar{k}\bar{r}_j) \right|^2 \right) = \frac{I_o}{R^2} \left(1 + \chi(\bar{k}) + |O(\bar{k})|^2 \right)$$

$$I_{poly}\left(\overline{k}\right) = \sum_{j} \frac{-2b}{r_{j}} \frac{1}{4\pi r_{j}^{2}} \oint_{|r_{j}|=r_{j}} \cos\left(kr_{j} - \overline{k}\overline{r}_{j}\right) dA = \sum_{r_{j}} \frac{N_{r^{j}}b}{kr_{j}^{2}} \sin\left(2kr_{j}\right)$$

Pattern Recognition Biology!!!

Complex body

PUZZLE

sample	 / fer mi	b _{observed} fermi	interato mic distance	amplificat ion	wavelength (Å)	cos(kr)/r
Palladium(PdH)	5.91	41	H-Pd: 3.37 Å	7	1.18 Å	0.18
Hydrogen(PdH)	- 3.74	- 37	Н-Н: 2.75 Å	10	1.18 Å	-0.17
H (NH ₄ Cl)	- 3.71	- 37	Н-Н :1,68 Å	10	1 Å	-0,26
N(NH ₄ Cl)	9.36	37	H-N :1,03 Å	4	1 Å	0.95
SnCd	6.22 5	19	Sn-Cd :3.02 Å	3	1 Å	0.33

Budapest XII, Konkoly Thege út 29-33, KFKI

H-1525 Budapest, Pf. 49. Hungary

Thank you for your attention!

László CSER

Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences (Budapest Neutron Centre) Email: cser@mail.kfki.hu