ANGULAR CORRELATIONS BETWEEN FRAGMENT SPINS AND PROMPT NEUTRONS IN SPONTANEOUS FISSION OF ²⁵²Cf.

<u>Yu. Kopatch¹</u>, L. Stuttge³, F.Goennenwein⁴, M. Mutterer⁵, O. Dorvaux³, S.Telezhnikov¹, E. Chernysheva², F. Hanappe⁶, and F.-J. Hambsch⁷

¹Frank Laboratory of Neutron Physics, JINR, 141980 Dubna, Russia
²Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia
³Institut de Recherches Subatomiques, F-67037 Strasbourg Cedex, France
⁴Physikalisches Institut der Universität, D-72076 Tübingen, Germany
⁵Institut für Kernphysik, Technische Universität, D-64289 Darmstadt, Germany
⁶Universite Libre de Bruxelles, 1050 Bruxelles, Belgium
⁷EC-JRC-Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel, Belgium

Content

- 1. Introduction / Motivation.
- 2. Experiment.
- 3. Methodical studies. Monte Carlo simulations.
- 4. Data evaluation.
- 5. Summary & outlook.

Introduction

- It is well known that fission fragments are formed with rather high angular momenta (spins).
- Fragment spins are aligned perpendicular to the fission axis.
- Fragment spin properties (population, alignment etc) are usually probed by the correlation measurements of gamma-rays, emitted from fission fragments.
- Neutrons are emitted with a strong anisotropy in the laboratory system due to kinematic focusing in the direction of accelerated fragments.
- In analogy with gamma-rays, some anisotropy of the neutron emission can be expected with respect to the direction of the fragment spin.
- There are theoretical arguments / calculations, as well as indirect experimental evidences that such an anisotropy should exist. However, no direct observation of this effect is known until now.

Unisotropic neutron emission

Neutron anisotropy in fission

ISINN20, Alushta, May 21-26 2012

Angular Correlation of Neutrons from Spontaneous Fission of ²⁵²Cf

J. S. Pringle and F. D. Brooks Physics Department, University of Cape Town, Rondebosch, 7700, South Africa Phys. Rev. Letters, 1975

THE ESTIMATION OF SCISSION NEUTRON PARAMETERS FROM N-F AND N-N ANGULAR CORRELATIONS IN ²³⁵U(n_{th}f) REACTION

LS. Guseva, A.M. Gagarski, V.E. Sokolov, G.A. Petrov, D.O. Krinitsin, G.V. Val'ski, A.S. Vorobyev, O.A. Scherbakov

Petersburg Nuclear Physics Institute of Russian Academy of Sciences Gatchina, Leningrad District, 188300, Russia lsinn16

ISINN20, Alushta, May 21-26 2012

Theoretical calculations

ANGULAR ANISOTROPY OF NEUTRONS EVAPORATED FROM FISSION FRAGMENTS

V.E.Bunakov¹, I.S.Guscva¹, S.G.Kadmensky², G.A.Petrov¹

¹Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia; ²Voronezh State University, Voronezh, Russia

lsinn13

Possible reasons for discrepancy:

- Emission of neutrons from not fully accelerated fragments
- Scission neutrons
- Angular anisotropy with respect to the FF spins

Theoretical calculations

ANGULAR ANISOTROPY OF NEUTRONS EVAPORATED FROM FISSION FRAGMENTS

V.E.Bunakov¹, <u>I.S.Guscva¹</u>, S.G.Kadmensky², G.A.Petrov¹

¹Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia; ²Voronezh State University, Voronezh, Russia

25 1) E_=5 MeV 20 2) E_=4 MeV 3) E_=3 MeV Anisotropy, % 15 4) E_=2 MeV 5) E_=1 MeV 5 0 10 20 30 50 60 70 80 0 40 90 Angle, degree Fig. 11. Energy dependence of angular anisotropy in SMS.

Isinn13

Fig. 10. The average angular anisotropy in CMS for light (L) and heavy (H) fragments of 252 Cf.

ROT-effect in neutron emission

Is supposed to be observed due to the neuron angular anisotropy with respect to the fragment spins

THE ESTIMATION OF ROT-EFFECT FOR NEUTRONS EVAPORATED FROM FULLY ACCELERATED FRAGMENTS IN BINARY FISSION

I.S. Guseva

Petersburg Nuclear Physics Institute of Russian Academy of Sciences Gatchina, Leningrad District, 188300, Russia T-ODD ANGULAR CORRELATIONS IN THE EMISSION OF PROMPT NEUTRONS IN ²³⁵U FISSION INDUCED BY POLARIZED NEUTRONS

Danilyan G.V.¹, Klenke J.², <u>Krakhotin V.A.¹</u>, Kopatch Yu.N.³, Novitsky V.V.³, Pavlov V.S.¹, Shatalov P.B.¹

New method – triple FF-n-n correlations

Advantage: the effect doesn't depend on fission fragment and neutron relative velocities

CORA experiment

CORrelation Angles

CORA experiment

Two walls arrangement

New measurement

Quasi-spherical arrangement

DEMON DETECTORS

DEMON consists of ~100 individual large size NE213 liquid scintillator cells. Each cell is 20 cm long, has a diameter of 16 cm and contains 4.5 liters of a liquid rich in Hydrogen.

The n- γ discrimination is obtained by a pulse shape analysis by comparison of the slow component of the charge to the total one.

CODIS - double ionization chamber with sectored cathode

Allows to measure FF energies (masses) and flight direction (polar and azimuthal emission angles).

CODIS - double ionization chamber with sectored cathode

The model:

 $W \propto 1 + A \cdot \sin^{-2} \theta$

- One fission fragment (FF) is emitted isotropically and detected in the ionization chamber with perfect angular resolution.
- FF spins are perfectly aligned in the plane perpendicular to the fission axis.
- Neutrons are emitted anisotropically with respect to the fragment spin:

 θ - angle between n and I

A – anisotropy coefficient (can be varied)

- Neutrons are detected with 100% efficiency, no cross-talk between neighboring detectors
- Double neutron coincidences are simulated.
- "Control" simulation is performed with zero anisotropy

Angle between neutron and fragment spin (c.m. system) A=1.

$$W \propto 1 + A \cdot \sin^{-2} \theta$$

Angle between neutron and FF (c.m. system) A=1.

Angle between neutron and FF (lab system) A=1.

Projection of the n-n angular distribution onto the XY plane (perpendicular to the fission axis).

Original distribution
$$\theta_{nl}$$
 $W \propto 1 + A \cdot \sin^{-2} \theta$ A=1Projection angle ϕ_{nn} $W \propto 1 + a \cdot \cos^{-2} \phi$ a=0.08

A=0.08

Distribution of angle ϕ_{nn} detected by DEMONs

Normalized distribution (1)/(2)

Distribution of angle ϕ_{nn} for the isotropic emission.

Normalized distribution with zero anisotropy

Experimental results

Distribution of angle ϕ_{nn} detected by DEMONs

Distribution of angle ϕ_{nn} from two different events.

Cosine of angle between two neutrons

"Cross talk" rejection procedure

Distribution of φ angles between two neutrons

The same distribution after applying the cross talk rejection filter

Experimental results – after elimination of the neutron "cross talk"

Distribution of angle ϕ_{nn} from two different events.

Cosine of angle between two neutrons

Summary

- A new type of experiment has been performed, which allows to measure triple neutron-neutron-fission fragment correlations.
- A new type of data evaluation procedure is proposed, which allows to take into account precisely the geometrical and intrinsic efficiency of the DEMON detectors.
- Statistical accuracy is sufficient to detect the effect at the level of ~10⁻⁴.
- The anisotropy of neutron emission is directly observed in the plane perpendicular to the fission axis.
- The resulting a2 coefficient (6 ± 3) x10⁻³ in the projection plane corresponds to the neutron emission anisotropy of about 8%.
- The uncertainty of the obtained coefficient is mainly due to systematic errors caused by the "cross talk" between DEMON detectors and imperfectness of the geometry and efficiency correction procedure.

Thank you for your attention!