Collective states in nuclear level density within closed-form methods

<u>Gorbachenko O. M.¹</u>, Plujko V. A.^{1,2}, Bondar B. M.¹, Zolko M. M.¹, Rovenskykh E. P.¹

¹ Taras Shevchenko National University, Kyiv, Ukraine

² Institute for Nuclear Research, Kyiv, Ukraine

A level density of atomic nuclei is one of the most crucial ingredients for a reliable theoretical analysis and prediction of the nuclear reaction observables (cross sections, spectra, angular distributions, abundance of elements in the Universe, and other) within statistical models. In this contribution the level densities in spherical and deformed atomic nuclei are investigated using different semiphenomenological approaches with allowance for quasiparticle and collective excitations.

ISINN-20, Alushta, Ukraine, May 21 –26, 2012

Effect of the collective states

The collective states can strongly effect on the level density, specifically, at low excitation energies. The simplest method to estimate effect of the vibrational states on level densities is calculation of collective enhancement factor

$$K = \rho / \rho_0$$

 ρ , ρ_0 - level densities with and without allowing for collective states

Collective enhancement factor

$$K = K_{vibr} \cdot K_{rot}$$

Problems with estimation of K

1. Uncertainties in value of K_{vibr}

Closed-form approach

Ignatyuk A.V. Statistical properties of excited nuclei. 1983; Yad. Fiz. 21(1975) 20; Izv.AN SSSR 38 (1974) 2612 (RPA approach);

Ignatyuk A.V., Weil J.L., Raman S., Kahane S. PRC. 47 (1993) 1504

$$K_{vibr} (S_n) \sim 15 \div 30$$

$$(A \sim 100); RIPL - 2,3$$

Microscopic calculations within quasiparticle-quasiphonon model

Soloviev V.G., Stoyanov Ch., Vdovin A.I. NPA224 (1974) 411; Voronov V.V., Malov L.A., Soloviev V.G. Yad.Fiz. 21 (1975) 40; Malov L.A., Soloviev V.G., Voronov V.V. Phys.Lett. B55 (1975) 17; Vdovin A.I., Voronov V.V., Malov L.A. Soloviev V.G., Stoyanov Ch. Fiz.El.Chas.At.Yad. 7 (1976) 952

$$K_{vibr}(S_n) \sim 2 \div 5 (A \sim 100)$$

 $K_{rot}(S_n) \approx J_{\perp}T \sim 100 (A \sim 100)$

2. Energy dependence

Unrealistic dependence of vibrational enhancement factor on excitation energy without collective state damping

Enhancement calculations

Response function method

[Plujko V.A., Gorbachenko O.M. // INDC(NDS)-462,Distr:G+NM,IAEA, (2004)65]

$$K = \rho / \rho_0 \quad \text{with } \rho \text{ with in saddle-point} \\ \text{approximation} \\ \rho (U, A) = \left(4 \pi^2 D\right)^{-1/2} \text{ exp } S(\alpha_0, \beta_0), \\ S(\alpha_0, \beta_0) = -\alpha_0 A + \beta_0 E + \ln Z(\alpha_0, \beta_0) \\ \text{werely}$$

- nuclear entropy;

$$Z (\alpha, \beta) = \operatorname{Tr}\left[\exp(-\beta \tilde{H})\right]$$

- partition function;

$$\Omega(\alpha, \beta) = -\ln Z(\alpha, \beta) / \beta - \text{thermodynamic potential};$$
$$\tilde{H} \equiv \hat{H} - \mu \hat{A}; \quad \mu = \alpha / \beta ;$$

Equations of thermodynamic state:

$$\begin{cases} A = \partial \ln Z / \partial \alpha |_{\alpha_0, \beta_0}, \\ E = -\partial \ln Z / \partial \beta |_{\alpha_0, \beta_0} \end{cases}$$

1 / $\beta_0 = T$ - the temperature; $\mu = \alpha_0 / \beta_0$ - chemical potential

Coherent separable interactions

$$V_{k_{L},res}(i, j) = k_{L} \sum_{L,\mu} q_{L\mu}^{*}(\vec{r}_{i}) q_{L\mu}(\vec{r}_{j}),$$

$$q_{L\mu}(\vec{r}) = r^{L}Y_{L\mu}(\hat{r})$$

The total Hamiltonian: $\hat{H}_{k} = \hat{H}_{0} + \hat{V}_{k, res}$,

Vibrational state addition to partition function

$$\Delta Z = Z / Z_0 = e \times p (-\beta \Delta \Omega), \quad Z_0 = \sum \hat{H}_0$$

Green's function method result for thermodynamic potential

$$\Delta \Omega = \sum_{L} \Delta \Omega_{L} ;$$

$$\Delta \Omega_{L} = -\frac{2L+1}{2\pi} \int_{0}^{k_{L}} dk' \int_{-\infty}^{+\infty} \frac{\hbar}{1-e^{-\beta\hbar\omega}} \operatorname{Im}(\chi_{L}^{k'}(\omega) - \chi_{L}^{0}(\omega)) d\omega ;$$

 $\chi_{L}^{\kappa'}(\omega) = \operatorname{Tr}_{\{1\}} \left(q_{L0}(\vec{r}) \cdot \delta \rho(\vec{r}; \omega) \right)_{k'} - \operatorname{RF} \text{ within Vlasov-Landau kinetic equation}$

The temperature in ^{5 6} F e: (- - -) with allowance for (2 ⁺) vibrational state and without(---)

RF method calculations for ${}^{56}Fe$

RF within Vlasov-Landau kinetic equation

One resonance RF

$$\chi_{k,L}(\omega) = \frac{\chi_{0,L}(\omega)}{1 - k \,\chi_{0,L}(\omega)}$$
$$\chi_{0,L}(\omega) = B\left(\frac{1}{\omega - \tilde{\omega}_0} - \frac{1}{\omega + \tilde{\omega}_0^*}\right), \quad \tilde{\omega}_0 = \omega_0 - i\eta_0$$

$$\Delta \Omega_L = -\frac{2L+1}{\beta} \ln \left(\Delta Z^{(B)} \Delta Z^{(M)} \Delta Z^{(0)} \right)$$

Phenomenological expressions for vibrational enhancement factor

Boson partition function with damped occupation numbers(DN)

[Ignatyuk A.V., Weil J.L., Raman S., Kahane S. PRC 47 (1993) 1504]

$$\overline{K} = \exp\left(\overline{S} - \overline{U}/T\right) \equiv K_{DN},$$

$$\overline{S} = \sum_{L} (2L+1) \left[(1+\overline{n}_{L}) \ln(1+\overline{n}_{L}) - \overline{n}_{L} \ln \overline{n}_{L} \right],$$

$$\overline{U} = \sum_{L} (2L + 1)\hbar \omega_{L} \overline{n}_{L},$$

$$\overline{n}_{L} = \frac{\exp\left[-\Gamma_{L}/(2\hbar \omega_{L})\right]}{\exp(\hbar \omega_{L}/T) - 1},$$

$$\Gamma = C \cdot \left[(\hbar \omega)^{2} + 4\pi^{2}T^{2}\right],$$

$$C = 0.0075A^{1/3} M eV^{-1}$$

Boson partition function with complex energies (CE)

[Blokhin A.I, Ignatyuk A.V., Shubin Yu.N. Yad. Fiz. 48 (1988) 371]

$$\begin{split} K &= \prod_{L} \left| \frac{\delta Z_{B,L}(\hbar \omega_L + i \gamma_L; T)}{\delta Z_{B,L}(\hbar \tilde{\omega}_L + i \tilde{\gamma}_L; T)} \right| = \\ &= \prod_{L} \left| \frac{1 - \exp\left[-(\hbar \omega_L + i \gamma_L) / T \right]}{1 - \exp\left[-(\hbar \tilde{\omega}_L + i \tilde{\gamma}_L) / T \right]} \right|^{-(2L+1)} \equiv K_{CE} \end{split}$$

$$[\hbar \omega_L]^2 = [\hbar \omega_L]^2 - \xi (T) \{ [\hbar \omega_L]^2 - [\hbar \omega_{L,exp}]^2 \},$$

$$\xi$$
 (T) = e x p { - C₁T² / [$\hbar \omega_{L,exp}$] }

K using boson partition function
with average occupation numbers (BAN)

$$K = K_{BAN} \equiv K(\Delta Z = \Delta Z_{BAN})$$

$$\Delta Z = \prod_{L} (1 + \overline{n}_{L}(\omega_{L}))^{2L+1} \equiv \Delta Z_{BAN},$$

$$\overline{n}_{L} = \frac{1}{T_{p}} \int_{0}^{T_{p}} n_{L} \exp(-\Gamma_{L}t) dt = \frac{\left(1 - e \ge p(-2\pi\Gamma_{L}/\hbar\omega_{L})\right)}{\left(e \ge p(\hbar\omega_{L}/T) - 1\right)} \frac{\hbar\omega_{L}}{2\pi\Gamma_{L}}$$
Liquid drop partition function with reduction (EM)

[Empire-II code by Herman M., Capote-Noy R., Oblozinsky P. et al. Journ. Nucl. Sc. Techn. Suppl.2 (2002) 116]

$$K = K_{LDM} (1 - Q_{damp}) + Q_{damp} \equiv K_{EM},$$

$$Q_{damp} = 1/[1 + e x p \{ (T_{1/2} - T)/D T \}],$$

$$D T = 0.1 M e V$$
, $T_{1/2} = 1 M e V$

$$K_{LDM} = e \times p \left[C_{3} A^{2/3} \cdot T^{4/3} \right]$$

Rotational contribution

[Ignatyuk A.V., et al, PRC 47 (1993) 1504; RIPL2]

$$K_{rot}(U) = \frac{(J_{\perp}T(1+\beta/3)-1)}{(1+\exp(U-U_{cr})/d_{cr})} + 1,$$

$$U_{cr} = 1\ 2\ 0\ A^{1/3}\ \beta^{-2} \quad M \ eV ,$$

$$d_{cr} = 1\ 4\ 0\ 0\ A^{-2/3}\ \beta^{-2} \quad M \ eV$$

 J_{\perp} - moment of inertia, β - quadrupole deformation

Comparison of enhancement factor in ^{1 4 6} S m : K _{IB M} - finite temperature IBM [Mengoni A., et al. Journ. Nucl. Sc. Techn. Suppl.2 (2002) 766]; K $^{(1)}_{R F}$ - RF method in one-pole approach NUCLEAR LEVEL DENSITY

$$\rho (U) = \rho_0 (U', T) \cdot K (T)$$

Generalized Superfluid Model (GSM) for ρ_0 is used by default in codes TALYS and EMPIRE

Different expressions for GSM model is used in:

1) [Ignatyuk A.V., et al, PRC 47 (1993) 1504; RIPL2]

$$U' = U + n\Delta_0 + \delta_{shift}, \quad \Delta_0 = 12/\sqrt{A} \quad (MeV)$$

$$E_{cond} = \frac{3}{2\pi^2} a_{cr} \Delta_0^2 \quad \text{-condensation energy}$$

$$\delta_{shift} \quad \text{-additional shift to excitation energy}$$

2) [Svirin M.I., Fiz.El.Chas.At.Yad (Particles and Nucleus), 37(2006)901.] $U' = U + \delta_{shift}, \quad E_{cond} = \frac{3}{2\pi^2} a_{cr} \Delta_0^2 - n\Delta_0$ n = (2 - even - even, 1 - odd, 0 - odd - odd)

Dependence of temperature (T) and level density (ρ) on excitation energy (U) for odd nucleus ⁵⁷Fe ($\delta_{shift}=0$) : solid line – GSM of Ignatyuk, dash line – GSM of Svirin

Comparison with experimental data

Observable values:

•Cumulative number of nuclear levels

$$N_c = \int_0^{U_0} \rho(U) dU$$

Fitting of level density within the EMPIRE code

Enhanced GSM model recommended with the parameters $\tilde{a}, \ \delta_{shift}$

For prolate nuclei
if
$$U \le U_{cr} \Rightarrow \text{GSM}$$
 (BCS model with $K_{coll} = K_{vibr}K_{rot}$)
if $U \ge U_{cr} \Rightarrow$
 $p(E, J, \pi) = \frac{1}{16\sqrt{6\pi}} \left(\frac{\hbar}{J_{\parallel}}\right)^{\frac{1}{2}} a^{\frac{1}{4}} \sum_{K=-J}^{J} \left(U - \frac{\hbar^2 K^2}{2J_{eff}}\right)^{-\frac{5}{4}} \exp\left\{2\left[a\left(U - \frac{\hbar^2 K^2}{2J_{eff}}\right)\right]^{\frac{1}{2}}\right\}$
 $u = E - E_{cond} + n\Delta + \delta_{shift}$,
 $a(U) = \tilde{a}(1 + f(U)\frac{\delta W}{U}), f(U) = 1 - \exp(-\gamma U), \quad \frac{1}{J_{eff}} = \frac{1}{J_{\parallel f}} - \frac{1}{J_{\perp}}$
Fitting of the parameters $\tilde{a}, \delta_{shift}$ by the minimum of
 $\chi^2 = \sum_{i=N_{cum,min}}^{N_{cum,max}} (i - N_{cum,theor})^2 / i + \left(\frac{\rho_{exp} - \rho_{theor}}{\Delta \rho_{exp}}\right)^2$
 $N_{cum,theor} = \int_{0}^{U} \rho(E) dE$ $\rho_{exp} = 1/D_0, \rho_{theor} = \sum_{J=|I-1/2|}^{I+1/2} \rho(S_n, J, \pi)$

Fitting of the parameters \tilde{a} , δ_{shift} :

Comparision of different parametrizations for enhancement factor with microscopical calculation $K_{m \ i \ c \ r \ o}$.

[Vdovin A.I., Voronov V.V., Malov L.A. Soloviev V.G., Stoyanov Ch. Fiz.El.Chas.At.Yad. 7 (1976) 952]

Dependence of $d\sigma/dE$ on gamma-ray energy for $^{nat}Fe(n,x\gamma)$ reaction. Calculation was made with the use of the EMPIRE code 3.0 Experimental data are taken from Bondar V.M., Gorbachenko O.M., Kadenko I.M., Leshchenko B. Yu., Onishchuk Yu.M., Plujko V.A. //Proceedings of the 18th International Seminar on Interaction of Neutrons with Nuclei "Neutron Spectroscopy, Nuclear structure, Related topics", Dubna, May 26-29, 2010. (2011)135

Dependence of cross section σ on neutron energy for $^{nat}Fe(n,\gamma)$ reaction. Calculation was made with the use of the EMPIRE code 3.0. Experimental data are taken from EXFOR data library.

SUMMARY

• The calculation of different GSM models with phenomenological approaches for vibrational enhancement factors with allowance for damping were compared. An effect of collective state enhancement on gamma-emission in neutron-induced nuclear reactions is investigated. The calculations demonstrate rather strong dependence of the level density on collective states damping.

• *K* using boson partition function with average occupation numbers (BAN) is the best method of the vibrational enhancement factor calculation when N/Z dependence of asymptotic level density parameter is taken into account in the

form

$$\tilde{a}(A,I) = 0.71786A(1 + 24.906I^2) - 0.54324A^{2/3}(1 + 127.27I^2) - 0.13220Z^2/A^{1/3} (MeV^{-1})$$

 $\delta_{shift}(A,I) = 0.2309(1+94.36I^2) - 0.0000449A(1+24586I^2) - 0.4402E_{2_1^+}$

$$K_{vibr}(S_n) \sim 2 \div 5 \qquad (A \sim 100)$$

• for method of boson partition function with damping occupation numbers (DN) $\tilde{a}(A,I) = 0.0090735A(1-558.61I^2) - 0.017619A^{2/3}(1-1527.6I^2) + 0.020852Z^2/A^{1/3} (MeV^{-1})$ $\delta_{shift}(A,I) = 0.14986(1-356.03I^2) - 0.016985A(1-31.413I^2) - 0.51393E_{21}^{+} K_{vibr}(S_n) \sim 1.5 \div 3.0 \qquad (A \sim 1.0.0)$

$$I = (N - Z) / A$$

Thank you for the attention

GSM model proposed by the Ignatyuk [Ignatyuk A.V.,et al, PRC 47 (1993) 1504; RIPL2] (used in codes TALYS and EMPIRE)

$$\rho_{\text{int}}(U,I) = \frac{(2I+1)\omega(U)}{2\sqrt{2\pi}\sigma_{eff}^3} \exp\left\{-\frac{I(I+1)}{2\sigma_{eff}^2}\right\}$$

if
$$\beta = 0$$
 then $\sigma_{eff}^2 = \sigma_{\parallel}^2 \equiv \mathcal{F}_{\parallel}T$

if
$$\beta \neq 0$$
 then $\sigma_{eff}^2 = \sigma_{\perp}^{4/3} \sigma_{\parallel}^{2/3} \equiv \mathcal{F}_{\perp}^{2/3} \cdot \mathcal{F}_{\parallel}^{1/3} T$

$$\rho_{\rm int}(U) = \int_{0}^{\infty} \rho_{\rm int}(U, I) dI \cong \omega(U) / \sigma_{eff}$$

$$\rho(U) = \rho_{\text{int}}(U) K_{coll}(U; a_{GSM})$$

$$K_{coll}(U; a_{GSM}) = K_{rot}(U, T = \sqrt{U / a_{GSM}}) K_{vibr}(U, a_{GSM})$$

$\omega(U) = \exp S(U) / Det(U)^{1/2}$

At first the definition of the critical values $T_{cr} = 0.567\Delta_0$, $\Delta_0 = 12/\sqrt{A}$ (MeV)

 a_{cr} solution of the equation $a_{cr} = \tilde{a}(1 + (1 - \exp(-\gamma a_{cr}T_{cr}^2))\delta\varepsilon(Z, A)/a_{cr}T_{cr}^2)$

$$\begin{split} E_{cond} &= \frac{1}{4} g_{cr} \Delta_0^2 = \frac{3}{2\pi^2} a_{cr} \Delta_0^2 \equiv 0.152 \ a_{cr} \Delta_0^2, \quad U_{cr} = a_{cr} T_{cr}^2 + E_{cond} = 0.473 \ a_{cr} \Delta_0^2 \\ S_{cr} &= 2a_{cr} T_{cr} \quad Det_{cr} = 45.84 a_{cr}^3 T_{cr}^5 \\ \mathcal{F}_{\parallel,cr} &= 0.607927 a_{cr} < m^2 > (1 - 2\varepsilon/3) \cong 0.607927 a < m^2 > (1 - \alpha - 3\alpha^2/20) \\ \mathcal{F}_{\perp,cr} &= 0.607927 a_{cr} < m^2 > (1 + \varepsilon/3) \cong 0.607927 a < m^2 > (1 + \alpha/2 + 5\alpha^2/8) \\ < m^2 &>= 0.24A^{2/3} \quad \alpha \equiv \alpha_2 = \sqrt{5/4\pi}\beta \qquad \varepsilon = 0.946175\beta \\ U' &= U + n\Delta_0 + \delta_{shift} \quad n = \begin{cases} 0, & even - even \\ 1, & odd \\ 2, & odd - odd \end{cases} \end{split}$$

If
$$U' \ge U_{cr}$$
 the Back-shifted Fermi model used
 $U^* = U' - E_{cond}, \ a = \tilde{a}(1 + (1 - \exp(-\gamma U^*))\delta\varepsilon(Z, A)/U^*), \ T_{GSM} = \sqrt{U^*/a}$
 $S = 2aT_{GSM}, \ Det = 45.84a^3T^5$
 $\mathcal{F}_{\parallel} = 0.607927a < m^2 > (1 - 2\varepsilon/3) \cong 0.607927a < m^2 > (1 - \alpha - 3\alpha^2/20)$
 $\mathcal{F}_{\perp} = 0.607927a < m^2 > (1 + \varepsilon/3) \cong 0.607927a < m^2 > (1 + \alpha/2 + 5\alpha^2/8)$

If $U' < U_{cr}$ the Superfluid model used

$$\begin{split} \varphi^{2} &= 1 - U'/U_{cr}, \qquad T_{GSM} = 2T_{cr} \,\varphi/\ln\left((1+\varphi)/(1-\varphi)\right) \\ S &= S_{cr}(1-\varphi^{2})T_{cr}/T_{GSM}, \qquad Det = Det_{cr}(1-\varphi^{2})(1+\varphi^{2})^{2} \\ \mathcal{F}_{||} &= \mathcal{F}_{||,cr}(1-\varphi^{2})T_{cr}/T_{GSM}, \quad \mathcal{F}_{\perp} = \mathcal{F}_{\perp,cr}(1+2(1-\varphi^{2})T_{cr}/T_{GSM})/3 \end{split}$$

GSM model proposed by the Svirin [Svirin M.I., Fiz.El.Chas.At.Yad (Particles and Nucleus), 37(2006)901.]

$$\rho_{\rm int}(U,I) = \frac{(2I+1)\omega(U)}{2\sqrt{2\pi}\,\sigma_1^3} \exp\left\{-\frac{I(I+1)}{2\sigma_2^2}\right\}$$

if
$$\beta = 0$$
 then $\sigma_1^2 = \sigma_{\parallel}^2 \equiv \mathcal{F}_{\parallel}T$, $\sigma_2^2 = \sigma_{\parallel}^2 \equiv \mathcal{F}_{\parallel}T$
if $\beta \neq 0$ then $\sigma_1^2 = \sigma_{\perp}^{4/3} \sigma_{\parallel}^{2/3} \equiv \mathcal{F}_{\perp}^{2/3} \cdot \mathcal{F}_{\parallel}^{1/3}T$, $\sigma_2^2 = \sigma_{\perp}^2 \equiv \mathcal{F}_{\perp}T$
 $\rho_{\text{int}}(U) = \int_{0}^{\infty} \rho_{\text{int}}(U, I) dI \cong \omega(U) / \sigma_{\parallel}$

 $\rho(U) = \rho_{\text{int}}(U)K_{coll}(U;a_{GSM}) \quad K_{coll}(U;a_{GSM}) = K_{rot}(U,T = \sqrt{U/a_{GSM}})K_{vibr}(U,a_{GSM})$

 $\omega(U) = \exp S(U) / Det(U)^{1/2}$ with such differences:

$$E_{cond} = \frac{1}{4} g_{cr} \Delta_0^2 - n\Delta_0 = \frac{3}{2\pi^2} a_{cr} \Delta_0^2 - n\Delta_0 \equiv 0.152 \ a_{cr} \Delta_0^2 - n\Delta_0$$
$$U_{cr} = a_{cr} T_{cr}^2 + E_{cond} = 0.473 \ a_{cr} \Delta_0^2 - n\Delta_0$$
$$U' = U + \delta_{shift} \qquad \alpha = \sqrt{5/4\pi}\beta$$
$$\mathcal{F}_{\parallel,cr} = 0.607927 a_{cr} < m^2 > (1 - \alpha - 3\alpha^2/20)$$
$$\mathcal{F}_{\perp,cr} = 0.014A^{5/3}(1 + \alpha/2 + 5\alpha^2/8)$$

If $U' \ge U_{cr}$ the Back-shifted Fermi model used

$$\mathcal{F}_{\parallel} = 0.607927a < m^2 > (1 - \alpha - 3\alpha^2 / 20)$$
$$\mathcal{F}_{\perp} = 0.014A^{5/3}(1 + \alpha / 2 + 5\alpha^2 / 8)$$

If $U' < U_{cr}$ the Superfluid model used $Det = Det_{cr}(1)$

$$Det = Det_{cr}(1 - \varphi^2)(1 + \varphi^2)^3$$

$$\varphi^2 = 1 - U'/U_{cr} = 1 - (U'^{(Ignatyuk)} - n\Delta_0)/(U_{cr}^{(Ignatyuk)} - n\Delta_0)$$

 $\delta_{shift}(A,I) = 0.2309(1 + 94.36I^2) - 0.0000449A(1 + 24586I^2) - 0.4402E_{21^+}$

Test of approach acceptance
$$\rightarrow \chi^2$$
 minimum
 $\chi_i^2 = \left(\frac{\overline{\rho}(A_i) - \overline{\rho}_{\exp}(A_i)}{\Delta \overline{\rho}_{\exp}(A_i)}\right)^2 + \sum_{N_{c,\exp}^{\min}}^{N_{c,\exp}^{\max}} \left(\frac{N_c(A_i) - N_{c,\exp}(A_i)}{\sqrt{N_{c,\exp}(A_i)}}\right)^2,$

 $\bar{\rho}_{\exp}(A_i)$ – from RIPL-2, $N_{c,\exp}^{\min}$ – from RIPL-3("level-densities-gsmcol.dat") $N_{c,\exp}^{\max}$ – from RIPL-3(up to maximum well known level)

Fitting of the parameters \tilde{a} , δ_{shift} for each nuclei by the minimum of

$$\chi_i^2 = \left(\frac{\rho_i - \rho_{\exp,i}}{\Delta \rho_{\exp,i}}\right)^2 + \frac{\left(\mathbb{N}_i - \mathbb{N}_{\exp,i}\right)^2}{\mathbb{N}_{\exp,i}}$$

Smallest χ^2 value corresponds to method of boson partition function with average occupation numbers (BAN approach).