Science in Service of Environment Protection in the Western Carpathians

Slovak Academy of Sciences

Brussels, 24th April 2012

Long tradition of science in nature protection

- 1762 first ever Mining Academy in Banská Štiavnica /Schemnitz/Selmecbánya with separate department of forestry management, sustainable forestry, forest and nature protection
- 1930 foundation of long-term research plots in forests
- 1965 Institute of Landscape Biology, later Institute of Landscape Ecology of the Slovak Academy of Sciences
- 1985 LANDEP
 - methodology of landscape management in sustainable way
- 1992 this methodology recommended by Summit In Rio de Janeiro,

Conventions, treaties

- Convention on Biological Diversity. 1992,
 Rio de Janeiro
- Bern Convention, 1979, (protection of plants and animals)
- Bonn Convention, 1979 (migratory species protection)
- Ramsar Convention, 1990 (protection of wetlands)
- Danube Convention, 1994, Sofia (protection and sustainable utilisation of the Danube
- Water Framework Directive, 2000
- European Convention on Ladscape, 2000, Florence

Conventions, treaties

- Genf Convention, 1979 (air pollution)
- UNO Framework Convention on Climate Change, 1991, New York
- Kyóto Protocol, 1997 (air pollution, greenhouse gasse)
- Vienna Convention, 1985 (protection of ozon layer)
- and others

- Gloria Influence of global climate changes natural and antropogenerous inputs stress factors on changes of biodiversity of selected high-mountain ecosystems
- Responsiveness of Alpine vegetation to N
- Biodiversity reassessment and evaluation of its trends in 26 forest sites in the Carpathians
- A long-term Biodiversity, Ecosystem and Awareness Research Network (6th FP)
- Threat to biodiversity through invasive non-native species a long-term monitoring network
- Mapping of main sources of pollutants and their transport in the Visegrad space

- Carbomont Effects of land-use changes on sources, sinks and fluxes of carbon in European mountain areas
- Long-term studies on biodiversity changes in natural and seminatural forest ecosystems, grassland and wetland ecosystems (Báb – since 1967, Kováčová – since 1985, meadows in Bukovské vrchy, since 1988, wetlands Parížske močiare, since 1992)
- Ecological answer of floodplain ecosystems to the decrease of underground water level
- Inventory of terrestrial ecosystems depended on underground water bodies in the Upper Hron Valey

- Historical landscape preservation (Svätý Jur, Liptovská Teplička)
- Sustainability Impact Assessment: Tools for Environmetal, Social and Economic Effects of Multifunctional and Use in European Regions (Sensor, 7thFP)
- Mobilising the European Social Research Potential to Support of Biodiversity and Ecosystem Management (Sobio, 6thFP)
- Linking Pan-European Landcover Changes to Pressure on Biodiversity (Biopress, 6thFP)

- Environmental Monitoring of the Surroundings of Slovalco, Žiar nad Hronom (Aluminium Plant)
- Creation of Environmental Limits for Sustainable Development
- Integrated Landscape Management
- Evaluation of Agricultural Landscape in Transitive Economy
- The Rural Agricultural Landscape and its Biodiversity in Transforming Socio-Economic Environment
- Landscape Ecological Optimal Territorial and Functional Utilization of the Biosphere Reserve Tatry

Landscape protection. Landscape diversity – landscape typisation

Unique and rare landscape types

Sustainable land use

 Methodology of landscape management in sustainable way - the basis for the creation of urban planning documentation

Representative geo-ecosystems

Atlas of Geoecosystems of Slovakia- Description of all regions in the Danube catchmens of the Western Carpathians

- abiotical condition

- biotical conditions

- sociological situation

Protection against natural hazards, risk

Protection against floods, draught, erosion, landslides

Transfer scientific knowledge

 The transmission of scientific knowledge into science administration, participation in the development of environmental policy, strategic documents, creation of the indicators

Environmental education, raising environmental awareness

 The transfer of knowledge to the educational process, increasing environmental awareness

Initiatives of scientists

- S4C Science for Carpathians, founded 10 June 2009, Bratislava, Regional network of scientists
- Forum Carpaticum Scientific event, scientists from S4C to discuss common problems, preparation of scientific projects, next 30th May - 2nd June 2012, Stará Lesná, Slovakia
- Carpathian Convention, Secretariat in Vienna, support of science in the countries in the Carpathian region (not funding)
- Assistance to EU DG ENVIRONMENT in management of NATURA 2000 sites in SK, CZ, HU, (PL, RO)
- Landscape Europe, network of scientific instituties

Contribution to the Knowledge Society

Regional (small) scale projects – examples:

- Learning together Establishment of the Ecological Laboratory at basic school
- Open-door days in the Bisophere reserves
- Publication of easy-read books and brochures on solving environments problems

Contribution to the Knowledge Society

- Danube Knowledge Cluster, open for institutes, universities, scientists
- Projects under preparation focused on integrated management of tributaries of the Middle Danube to contribute to ecological stabil landscape, prevent flood and erosion.
- Danube Academies Conference periodical event of representatives of the Danube Catchment Academies
- Common strategy in the field of sustainable development of the region – including environment

Challenges of Science in Service of Environment Protection

- Integrated river basin management
- Implementation of Danube Strategy
- Consequences of global changes, including climatic changes
- Forecasting, monitoring, modelling and prevention of natural risk and hazards
- the use of renewable energy sources
- Close –to- nature, ecological forestry, to ensure sustainability of wood production, soil protection, adaptation of forest ecosystems to climate change, to air pollution, to soil pollution, to decrease/increase the ground water level caused by Man
- Further long-term ecosystem research in the already established research plots to obtain data on trend of ecosystems production, biodiversity, stability

Challenges of Science in Service of Environment Protection

- Ensure sustainability of forestry, agriculture and fisheries
- Ecologisation of large-scale agriculture, providing scientific arguments for bio-farming, for maintenance of agricultural landscape in mountaineous regions (similar to Alps), for stopping the land abandonment
- Establishment and ecology-based management of sites of EU importance (NATURA 2000), birds territories, nesting territories, national parks and landscape protected areas, forests, grasslands, croplands, urban areas

Challenges of Science in Service of Environment Protection

- Maintain and enhance ecosystem services
- Dissemination of knowledge on <u>all ecosystem services</u> (production, protection, prevention of floods, providing fresh water, fresh air, good living conditions) to broad public, to politicians, <u>repeatedly</u>
- Address the problem of invasive alien species
- Elaboration of ecological and environmental indicators of sustainability
- Address the global biodiversity crisis in the Danube Catchment

