Spatial distributions of $^{238}\text{U}(n,\gamma)$ and $^{238}\text{U}(n,f)$ reactions in uranium target of assembly “QUINTA-M” irradiated with 2, 4 and 6 GeV deuterons

V.A. Voronko1, V.V. Sotnikov1, M.Y. Artiushenko1, Y.T. Petrusenko1, M.G. Kadykov2, S.I. Tyutyunnikov2, V.V. Chilap3, A.V. Chinenov3

1National Science Center Kharkov Institute of Physics and Technology, NAS Kharkov, Ukraine 61108

2Joint Institute for Nuclear Research, Dubna, Russia 141980

3Center of Physic and Technical Projects “Atomenergomash”, Moscow, Russia

ISINN-20 Alushta, Ukraine, May 21-26, 2012
Main purposes of this work

- to obtain spatial distributions of density of radiative capture reactions (the number of accumulating ^{239}Pu nuclei) and density of ^{238}U fissions in the volume of uranium target of assembly QUINTA-M;

- to obtain spatial distribution of spectral indices;

- to determine the total number of ^{238}U fissions and total amount of ^{239}Pu, accumulated at the volume of uranium target of assembly QUINTA-M;

- to compare of the obtained experimental results in dependence on the energy of the deuteron beam (per unit of beam power).
Experimental assembly “QUINTA-M”

- Detector’s plates
- Sections №1, №2, №3, №4, №5, №6
- Beam window
- Sections №2, №3, №4, №5
- Section №1

$m_U \approx 500 \text{ kg}$

$m_{\text{target}} \approx 540 \text{ kg}$
The scheme of the accelerator and experimental building 205

Superconductive accelerator –

- up to 12.8 GeV for protons or 6 GeV on nucleon (possibility of acceleration up to U)

- Extraction time \(\sim 10 \text{ s} \),
- Beam intensity \(10^8 - 10^{11}\),
- Perimeter 251.5 m, weight of cooled magnets over 80 tons

Nuclotron accelerator at LHEP, JINR, Dubna

ISINN-20 Alushta, Ukraine, May 21-26, 2012
Before the irradiation the target was carefully adjusted to the direction of the Nuclotron beam using polaroid films, i.e. the longitudinal axis of a target was combined with a direction of Nuclotron beam. The traces of one bunch of beam particles on polaroid film placed in front of the target.
Determination of total beam intensity

basic relations

\[
\Phi = \frac{A_M}{\sigma \cdot N_A \cdot D_{foil}} \cdot \frac{S_p}{\varepsilon_p(E) \cdot I_\gamma} \cdot e^{\lambda c} \cdot e^{-\lambda T} \cdot \frac{1}{1-e^{-\lambda_{\text{live}}}} \cdot K_B \cdot K_{COI} \cdot K_{ABS} \cdot K_G \cdot K_{NP}
\]

- \(K_B \) is factor determining the course of irradiation:
 \[
 K_B = \frac{\sum f_i}{\sum_i f_i e^{-\lambda_{ci}}}
 \]
 where \(t_{ci} \) - time from the end of each beam pulse until the end of irradiation,
 \(f_i \) - the intensity of the pulse (according to the values of monitoring of ionization chambers);

- \(K_{ABS} \) is correction on self-absorption:
 \[
 K_{ABS} = \frac{\mu D_{\text{sum}}}{1 - \exp \mu D_{\text{sum}}}
 \]

- \(K_G \) is correction on changed detector efficiency due to sample dimensions;
 effective center of the bulk sample is closer to the effective center of the detector \((R_1) \) in comparison with a point calibration source \((R_2) \):
 \[
 K_G \approx (R_1/R_2)^2
 \]

- \(K_{NP} \) is correction on non-point like emitters;

- \(K_{COI} \) is correction for gamma-lines coincidences
The values of correction factors
(for example)

<table>
<thead>
<tr>
<th></th>
<th>Detector «С»</th>
<th>Detector “W”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(«ЯСНАПП»)</td>
<td>(room.216, 205 building)</td>
</tr>
<tr>
<td></td>
<td>$E_\gamma \ 1368 \text{ keV}$</td>
<td>$E_\gamma \ 2754 \text{ keV}$</td>
</tr>
<tr>
<td>K_G</td>
<td>0.945</td>
<td>0.945</td>
</tr>
<tr>
<td>K_{NP}</td>
<td>1.008</td>
<td>1.008</td>
</tr>
<tr>
<td>K_{ABS}</td>
<td>1.014</td>
<td>1.010</td>
</tr>
<tr>
<td>K_{COI}</td>
<td>1.010</td>
<td>1.014</td>
</tr>
<tr>
<td>$K_GK_{NP}K_{ABS}K_{COI}$</td>
<td>0.976</td>
<td>0.976</td>
</tr>
</tbody>
</table>

ISINN-20 Alushta, Ukraine, May 21-26, 2012
The choice of monitor $^{27}\text{Al}(d,x)^{24}\text{Na}$ reaction cross sections

In the energy range of deuterons above 300 MeV the cross section for ^{24}Na is known only for deuterons with energy:

- 2.33 GeV: 15.25×1.5 mb

- 6 GeV: 14.1×1.3 mb

- 7.3 GeV: 14.7×1.2 mb

 (Kozma P. and Yanovski V. V.: Application of BaF$_2$ scintillator to off-line gamma ray spectroscopy, Czech Journal of Physics, 40 (1990) 393-397)
The choice of monitor $^{27}\text{Al}(d,x)^{24}\text{Na}$ reaction cross sections

Two methods were proposed:
1) approximation of the available data
2) recalculation of the $^{27}\text{Al}(p,x)^{24}\text{Na}$ reaction cross sections on protons (it was proposed by W. Westmier).

Doctor Wagner group determined the cross-sections by approximation as shown in the figure. (from Ondřej Svoboda dissertation)
The choice of monitor $^{27}\text{Al}(d,x)^{24}\text{Na}$ reaction cross sections

Moreover, it is possible in the range of ~ 2 GeV up to ~ 8 GeV to interpolate the three available experimental points (weighted least squares method). Then the cross-section are equal:

$$\text{CS}(\text{mb}) = 15.25 - 0.163 \times E(\text{GeV})$$
The choice of monitor 27Al$(d,x)^{24}$Na reaction cross sections

The suggestion of W. Westmier:
“The excitation functions for the inelastic reaction cross section of protons and deuterons on aluminium are shown in Figure 5, yielding a constant ratio between the inelastic cross sections at any energy. It is therefore assumed that cross sections for the individual reaction channels leading from 27Al to 24Na in proton and deuteron induced reactions will also run parallel. With this reasonable assumption we can calculate cross sections for the deuteron- induced reaction (σ_d) for any deuteron kinetic energy E_d as:

$$\sigma_d, E_d = \sigma_d, 2.33 \cdot \left(\frac{\sigma_p, E_d}{\sigma_p, 2.33} \right)$$

In this way the cross section for 4 GeV deuterons producing 24Na from aluminium is calculated as $14.628 \times 1.132 \text{ mb}$.”
The choice of monitor $^{27}\text{Al}(d,x)^{24}\text{Na}$ reaction cross sections

Cross-sections of $^{27}\text{Al}(p,x)^{24}\text{Na}$ reaction

<table>
<thead>
<tr>
<th>E, Gev</th>
<th>CS, mb</th>
<th>Error (+-)</th>
<th>Error (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>10.7</td>
<td>0.21</td>
<td>2.0</td>
<td>[3]</td>
</tr>
<tr>
<td>0.591</td>
<td>11</td>
<td>0.5</td>
<td>4.5</td>
<td>[6]</td>
</tr>
<tr>
<td>0.6</td>
<td>11.3</td>
<td>0.3</td>
<td>2.7</td>
<td>[5]</td>
</tr>
<tr>
<td>0.8</td>
<td>11.2</td>
<td>0.8</td>
<td>7.1</td>
<td>[1]</td>
</tr>
<tr>
<td>0.81</td>
<td>10.7</td>
<td>0.13</td>
<td>1.2</td>
<td>[3]</td>
</tr>
<tr>
<td>1.2</td>
<td>10.8</td>
<td>0.8</td>
<td>7.4</td>
<td>[1]</td>
</tr>
<tr>
<td>1.6</td>
<td>12.3</td>
<td>1</td>
<td>8.1</td>
<td>[1]</td>
</tr>
<tr>
<td>1.6</td>
<td>10.18</td>
<td>0.11</td>
<td>1.1</td>
<td>[3]</td>
</tr>
<tr>
<td>2.0</td>
<td>9.75</td>
<td>0.11</td>
<td>1.1</td>
<td>[3]</td>
</tr>
<tr>
<td>2.6</td>
<td>10.6</td>
<td>0.8</td>
<td>7.5</td>
<td>[1]</td>
</tr>
<tr>
<td>7.0</td>
<td>8.94</td>
<td>0.14</td>
<td>1.6</td>
<td>[3]</td>
</tr>
<tr>
<td>12</td>
<td>8.1</td>
<td>0.9</td>
<td>11</td>
<td>[2]average</td>
</tr>
<tr>
<td>22.4</td>
<td>8.78</td>
<td>0.14</td>
<td>1.6</td>
<td>[3]</td>
</tr>
<tr>
<td>28</td>
<td>8.3</td>
<td>0.5</td>
<td>6</td>
<td>[4]</td>
</tr>
</tbody>
</table>

In contrast to the deuteron for the proton cross sections for ^{24}Na experimentally determined up to 28 GeV (see Table).

Note that in the publication

cross-sections on the protons are measured with very high accuracy.
The cross sections for the $^{27}\text{Al} (p,x)^{24}\text{Na}$ reaction from [3, Morgan], and piecewise cubic interpolation of Hermite polynomials.
The choice of monitor $^{27}\text{Al}(d,x)^{24}\text{Na}$ reaction cross sections

<table>
<thead>
<tr>
<th>E, GeV</th>
<th>$^{27}\text{Al}(p,x)^{24}\text{Na} \ CS, \ mb$</th>
<th>$^{27}\text{Al}(d,x)^{24}\text{Na} \ CS, \ mb$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CS experiment (bold) and estimation</td>
<td>Exp. Error</td>
</tr>
<tr>
<td>0.81</td>
<td>10.7</td>
<td>0.13</td>
</tr>
<tr>
<td>1</td>
<td>10.645</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>10.18</td>
<td>0.11</td>
</tr>
<tr>
<td>2</td>
<td>9.75</td>
<td>0.11</td>
</tr>
<tr>
<td>2.33</td>
<td>9.67</td>
<td></td>
</tr>
<tr>
<td>2.52</td>
<td>9.56</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9.49</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.27</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9.01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.94</td>
<td>0.14</td>
</tr>
<tr>
<td>7.33</td>
<td>8.93</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8.85</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8.81</td>
<td></td>
</tr>
<tr>
<td>22.4</td>
<td>8.78</td>
<td>0.14</td>
</tr>
</tbody>
</table>

ISINN-20 Alushta, Ukraine, May 21-26, 2012
Total intensities

(Run March 2011, December 2011, March 2012)

<table>
<thead>
<tr>
<th>Run</th>
<th>Energy of deuterons, GeV</th>
<th>Exposure time of activation detectors</th>
<th>Total deuteron intensity</th>
<th>γ-spectrometers</th>
</tr>
</thead>
</table>
| March 2011 | 2 | start: 06.03.11 03^{28}
finish: 06.03.11 20^{56} | $1.69 \cdot 10^{13}$ | “ЯСНАПП”, detector ORTEC(B) |
| | 4 | start: 08.03.11 10^{39}
finish: 09.03.11 05^{56} | $1.41 \cdot 10^{13}$ | |
| | 6 | start: 20.03.11 21^{46}
finish: 21.03.11 14^{14} | $1.94 \cdot 10^{13}$ | |
| December 2011 | 1 | start: 14.12.11 17^{39}
finish: 15.12.11 08^{05} | $1.47 \cdot 10^{13}$ | “ЯСНАПП”, detector ORTEC(C), дет. к.216 |
| | 4 | start: 16.12.11 19^{57}
finish: 17.12.11 08^{21} | $1.96 \cdot 10^{13}$ | |
| | 8 | start: 19.12.11 00^{59}
finish: 19.12.11 05^{10} | $6.3 \cdot 10^{10}$
(defined by IC) | |
| March 2012
(the intensity of the beams will be corrected) | 1 | start: 10.03.12 16^{04}
finish: 10.03.12 21^{00} | $1.9 \cdot 10^{13}$ | Detector room 338 |
| | 4 | start: 15.03.12 00^{18}
finish: 15.03.12 09^{10} | $2.7 \cdot 10^{13}$ | |
| | 8 | start: 19.03.12 06^{26}
finish: 19.03.12 15^{27} | $3.7 \cdot 10^{12}$ | |
Determination of the accumulated plutonium

The number of ^{238}U neutron radiative capture reactions corresponds to the number of ^{239}Pu nuclei, which are formed by the chain of ^{239}U β-decay:

$$^{238}\text{U}(n,\gamma)^{239}\text{U} \beta^- (23,54 \text{ min}) \rightarrow ^{239}\text{Np} \beta^- (2,36 \text{ d}) \rightarrow ^{239}\text{Pu}$$

After the irradiation of uranium assembly γ-spectra of irradiated uranium foils were measured. Before measurement uranium foils were exposure for more than 4 hours to reach 99.9% of the decays of ^{239}U. The number of neutron capture reactions of uranium-238 was determined by measuring the activity of the ^{239}Np nuclide.
Mass distribution of fission products of $^{\text{nat}}\text{U}$ at different neutron energies

The number of nuclear fissions was determined by averaging the results for the following fragments:

- ^{97}Zr (5.7%), ^{131}I (3.6%)
- ^{133}I (6.3%), ^{143}Ce (4.3%)

The cumulative yield, averaged over data for neutrons with energy 2-22 MeV is shown in brackets.
Location of detectors on the plate

Section № 1

Sections № 2,3,4,5

Detector plates

Location of the detector plate

The scheme of ^{nat}U foils location on the detector plate, used in the experiment. Each plate had 5 positions at different distances from the radial symmetry axis of the target.

1 $R = 0$
2 $R = 40$ mm
3 $R = 80$ mm
4 $R = 120$ mm
5 $R = -80$ mm
γ-track technique

Detector scheme: uranium metal foil (diameter 7 mm, thickness 1 mm) used both as an activation detector, and a radiator for SSNTD (synthetic mica - fluorinephlogopite).

SSNTD: Track counting and fission rate determination

Metal foil: Activation measurement and capture reaction rate determination
Deuteron beam parameters determination

(2, 4 and 6 GeV deuterons)

Results obtained by SSNTD method
(Patapenka et al.)

<table>
<thead>
<tr>
<th>E_d, GeV</th>
<th>FWHM of distributions (mm)</th>
<th>Beam shift (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X direction</td>
<td>Y direction</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>16.1</td>
</tr>
<tr>
<td>6</td>
<td>15.6</td>
<td>22.4</td>
</tr>
</tbody>
</table>

$E_d = 2 \text{ GeV}$

$E_d = 4 \text{ GeV}$

$E_d = 6 \text{ GeV}$
Correction on beam position

\[R = \sqrt{R_0 - \Delta y} + \Delta x \cdot \cos \alpha - Z_0 \sin \alpha \]

\[Z = Z_0 \cdot \cos \alpha + \Delta x \cdot \sin \alpha \approx Z_0 \]
Density of natU(n,f) reactions per 1 deuteron per 1 GeV
Radial distributions
\(Z=367.5\)

Density of 239Pu production per 1 deuteron per 1 GeV
Radial distributions
\(Z=367.5\)

Number of capture reactions / Number of (n,f) reactions
Radial distributions
\(Z=367.5\)

Number of capture reactions / Number of (n,f) reactions
Radial distributions
\(Z=490\)

Number of capture reactions / Number of (n,f) reactions
Radial distributions
\(Z=490\)

Number of capture reactions / Number of (n,f) reactions
Radial distributions
\(Z=612.5\)

Number of capture reactions / Number of (n,f) reactions
Radial distributions
\(Z=612.5\)

Spectral Indices

ISINN-20 Alushta, Ukraine, May 21-26, 2012
Average spatial distributions of \((n,f), (n,\gamma)\) reactions and spectral index

Densities of the number of fissions, the number of plutonium nuclei and spectral indices averaged over the radial cross sections of the uranium target. The maximum values of density of fission and plutonium accumulation is approximately at a distance of about 120 mm from the entrance of the beam at the target. This is observed for all similar axial distributions of deuterons energies from 1 to 8 GeV.
Comparison of results at the different deuteron energies

Density of $^{nat}U(n,f)$ reactions per 1 deuteron per 1 GeV
Radial distributions

ISINN-20 Alushta, Ukraine, May 21-26, 2012
Integral distribution of \((n,\gamma)\) reaction (dependencies on uranium target radius)

ISINN-20 Alushta, Ukraine, May 21-26, 2012
Integral distribution of (n,f) reaction (dependencies on uranium target radius)

(n,f) \(Z = 122.5 \text{ mm} \)
(n,f) \(Z = 245 \text{ mm} \)
(n,f) \(Z = 367.5 \text{ mm} \)
(n,f) \(Z = 490 \text{ mm} \)
(n,f) \(Z = 612.5 \text{ mm} \)

2 GeV
4 GeV
6 GeV

Number of (n,f) reactions

R, mm

0 20 40 60 80 100 120

0.0 0.1 0.2 0.3 0.4 0.5 0.6

(n,f) Sum

R, mm

0 20 40 60 80 100 120 140

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

ISINN-20 Alushta, Ukraine, May 21-26, 2012
Integral numbers of ^{239}Pu accumulation and $^{\text{nat}}\text{U}$ fission in the volume of uranium target of assembly “QUINTA-M”

<table>
<thead>
<tr>
<th>Run</th>
<th>E, GeV</th>
<th>^{239}Pu</th>
<th>$^{\text{nat}}\text{U}$ fission</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2011</td>
<td>2</td>
<td>(7.0 0.3) 0.8</td>
<td>(8.8 0.4) 1.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(7.2 0.4) 0.8</td>
<td>(8.8 0.4) 1.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>(6.9 0.3) 0.7</td>
<td>(8.3 0.4) 0.9</td>
</tr>
<tr>
<td>Dec. 2011</td>
<td>1</td>
<td>(11.6 0.6) 1.2</td>
<td>(10.2 0.5) 1.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(10.9 0.5) 1.1</td>
<td>(8.7 0.4) 1.0</td>
</tr>
<tr>
<td>March 2012</td>
<td>1</td>
<td>(11.2 0.6) 1.2</td>
<td>(9.6 0.5) 1.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(10.8 0.5) 1.1</td>
<td>(8.8 0.4) 1.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>(10.5 0.5) 1.1</td>
<td>(9.8 0.5) 1.1</td>
</tr>
</tbody>
</table>
CONCLUSIONS

- The spectral index changes from the deuteron beam axis to the periphery of the uranium target from about 0.3 to 1 for “QUINTA-M” and does not depend on the energy of the primary beam for 2, 4 and 6 GeV deuteron.

- The total number of fissions in the volume of uranium target of “QUINTA-M”, that was defined by activation method, remains approximately constant within our statistical errors for all energies of the deuteron beam in the range from 1 to 8 GeV (calculated per a deuteron and per 1 GeV primal energy of the deuteron).

- The total number of accumulating 239Pu nuclei in the whole volume of the uranium target, calculated per a deuteron and per 1 GeV energy of the deuteron, does not depend on the primal energy of the deuteron beam, but increases by more than 50% in the presence of a lead blanket.
CONCLUSIONS

- Type of spatial distributions of the density of number of uranium fission and the number of accumulating ^{239}Pu per unit of power of the primary deuteron beam energy depends on the deuteron energy: the growth of primary energy deuterons decreases the number density of uranium fission and the number of ^{239}Pu nuclei accumulation in the near zone to the entrance of the deuteron beam at the target and at the same time, there is an increase in the density of uranium fission and ^{239}Pu accumulation to the periphery of the target.

- For a given sizes of uranium targets of “QUINTA-M” assembly, for a deuteron energies exceeding 1 GeV, we can’t experimentally estimate (at least, by the activation technique) required size of the uranium target, satisfying it kvasi-infinity and, therefore, it is impossible to estimate the total number of fissions and accumulated ^{239}Pu nuclei for kvasi-infinit target. This requires the measurement of uranium targets of larger mass.
Thank you for your attention!