The Oklo Phenomenon and Nuclear Data

Eduard Sharapov, Joint Institute for Nuclear Research

of the Oklo uranium revealed more es where nuclear taken place.

112742

Oklo reactor zones

Characteristic Data of the Oklo Phenomenon

age	(1,75 ± 0,10) Ga
duration	200 ka – 500 ka
fluence	max. 1,6 · 10 ²¹ cm ⁻²
flux density	10 ⁷ cm ⁻² s ⁻¹ – 10 ⁸ cm ⁻² s ⁻¹
burn-up	10 000 MW·d/tU – 25 000 MW·d/tU
conversion factor	0,4 - 0,6
fission events	0 % - 4 % fast fission of U-238
	4 % - 10 % thermal fission of Pu-239
for comparison a r	nodern power reactor:
burn-up	33 000 MW·d/tU

flux density

10¹³ cm⁻² s⁻¹ – 10¹⁴ cm⁻² s⁻¹

Nuclear Data used for OKLO

- Neutron cross sections: S.Mughabghab, S.Suchoruchkin
- Mass distribution of fission products: JEFF-3.1.1
- Oklo mass spectroscopy isotopic ratios: Hidaka, Holliger
- Life times, beta- and γ-decay radiation data: ENSDF
- Decay heat: sublibrary of the base ENDF/B-VII.1
- Reactor Physics: IRPhE project, 2011-Handbook
- Photoexcitation cross sections: latest Astrophysics Refs

H Hidaka P Holliger, Geochimica et Cosmochimica Acta 62 1998 89 R. Naudet, Oklo: des Reacteurs Nucleaires Fossiles, Eyrolles 1991

Plan of the talk

- Nuclear data for OKLO study
- OKLO phenomenon and variation of $\alpha = e^2/\hbar c$
- Temperature problem for OKLO reactor zones
- Lutetium thermometry with 175/176 Lu-isotopes
- Analysis and suggestions on Lu-176 isomeric ratio
- Lu-176 burning through (γ, γ') channel
- Gamma ray fluxes in Oklo zone RZ10

Co-authors: C Gould, A. Sonzogni, The work is partly published: PRC C85 (2012) 024610

OKLO and time variation of $\alpha = e^2/\hbar c$

Current Limits on $d/dt(\Delta \alpha / \alpha)$

$$\Delta \alpha = (\alpha_{past} - \alpha_{present})$$

Review: J.-P. Uzan, Liv. Rev. Relativity, v. 14 (2011), 2

Oklo over 2 Gyr (2006) $< 4 \times 10^{-18}$ yr ⁻¹ Atomic clocks: Hg, Al (2008) $< 4 \times 10^{-17}$ yr ⁻¹

Quasars over 10 Gyr (2011)* ~ 2 $\times 10^{-16}$ yr ⁻¹ *(smaller in the past)

C. Gould, E. Sharapov, S. Lamoreaux, PRC 83 (2006) 205618 Yu.Petrov et al.: G. Onegin, PRC 84 (2006)

Oklo temperature problem

Temperatures cited for Oklo vary widely

Indirect arguments:

•	Damour and Dyson (96)	450 - 1000 C
•	Fujii et al (02)	180 - 400
•	Gould et al (06)	200- 300
•	Petrov et al (06)	400- 500

Lutetium thermometry – analyze abundances of ¹⁷⁵Lu and ¹⁷⁶Lu, Sensitivity is due to 141 eV resonance in ¹⁷⁶Lu

•	Holliger and Devillers (81)	260-280
•	Onegin (10)	100-260
•	Hidaka and Holliger (98)	380, or >1000 ?!

Lutetium properties relevant for Oklo

Lu abundances and cross sections

	175	176
Natural	97.401%	2.599%
Oklo (meta sample)	99.6%	0.4%

b) 175 capture is to \mathcal{P}^V_g .s as well as to 4 hr 1 ⁻ isomer c) 176 isomer can be photo excited in (γ , γ') reactions

Definitions specific for Oklo study

'Effective' neutron Xs: $\sigma_ef = \int \sigma(v)n(v,T)v dv/\int n(v,T)v dv$

'Effective' neutron Flux: $\Phi_{ef} = \int n(v,T)vo dv$, vo = thermal

Standard: $\langle \Phi \rangle = /n(v,T)vdv$, $\langle \sigma \rangle = /\sigma(v)n(v,T)vdv / / n(v,T)vdv$

 $\sigma_ef\Phi_ef =<\sigma><\Phi>$

Cross section branching: $B_g = \sigma_g/(\sigma_g + \sigma_m)$

Burning constant: $\lambda = \sigma_ef \Phi_ef$

Shorthand for numbers of atoms for A=176 (Lutetium): N6(t)

Shorthand for neutron Xs of Lu-175, 176: σ_{ef-5} ,

Lutetium thermometry

$$\frac{N_6}{N_5}(\text{now}) = \frac{N_6^0}{N_5^0} \exp(-(\hat{\sigma}_6 - \hat{\sigma}_5)\hat{\Phi}t_1) + B^g \frac{\hat{\sigma}_5}{\hat{\sigma}_6 - \hat{\sigma}_5} \times [1 - \exp(-(\hat{\sigma}_6 - \hat{\sigma}_5)\hat{\Phi}t_1)] \exp\left(-\frac{D\ln 2}{t_{1/2}}\right)$$

σ_{ef-6} depends on *T*, so the isotopic ratio N6/N5(now) does! TABLE 1: Lutetium cross sections $\hat{\sigma}_5$ and $\hat{\sigma}_6$ for the Oklo RZ1

reactor at temperatures T_o from 0 °C to 600 °C (see text).

T_O (°C)	$\hat{\sigma}_5$ (kb)	$\hat{\sigma}_6$ (kt
0	0.115	4.216
20	0.115	4.487
100	0.115	5.359
200	0.115	6.310
300	0.114	7.013
400	0.114	7.544
500	0.114	7.715
600	0.114	7.750

channel. There exists

however problem with

the B g parameter.

Lu-175 branching ratio problem

National Nuclear Data Center

Activation cross section to Lu-176m σ -m $\sigma_m = 17 \pm 2$ b; $\sigma_m + \sigma_g = 23.\pm 2$ b

		Update Plot Reset			
3.23	3E-4	≤ E (eV) ≤ 2.04	Log •		
2.67 5		$\leq \sigma$ (b) ≤ 276.0	Log •		
-	View evaluated data View experimental data Add your data				
	#	Reference			
V	-	ENDF/B-VII.1 Library			
	1	Wisshak 2006			
	2	Young 1970			
	3	Young 1968			
V	4	Baston 1960			

Mughabghab, 0.025 eV $B_g = 0.28 \pm 0.05$ b Wisshak, E=25 keV $B_g = 0.14 \pm 0.02$ b A. Baston revisited $B_g = 0.21 \pm 0.11$ b

Lutetium thermometry: continue

We suggest to perform new, Improved Measurements of the Lu-175 thermal capture and activation cross sections in order to obtain a precision value of the branching ratio B_g for thermal neutrons

Lu-176 burning through (γ, γ') reaction

4 MeV

$$\lambda_{\gamma\gamma}(\boldsymbol{E}_{\boldsymbol{k}}) = \int \Phi_{\gamma}(\boldsymbol{E})\sigma_{\gamma\gamma}(\boldsymbol{E}, \boldsymbol{E}_{\boldsymbol{k}}) d\boldsymbol{E} = \Phi_{\gamma}(\boldsymbol{E}_{\boldsymbol{k}})\sigma_{\gamma\gamma'}(\boldsymbol{E}_{\boldsymbol{k}})$$

J. Carroll, Astrophys. J. (1989) v.34 $E_{k} = 839 \text{ keV}, \sigma_{\gamma\gamma'} \text{ int} = 33.4 \text{ mb} \cdot \epsilon_{v}$ $E_{k} = 4.0 \text{ MeV}, \sigma_{\gamma\gamma'} \text{ int} = 140 \text{ mb} \cdot \text{keV}$ $\Phi_{\gamma}(E_{k}) = \text{see calculations on next slides}$ Then, for $E_{k} = 4.0 \text{ MeV}$: (T of the Universe= $1.2 \cdot 10^{10} \text{ yr}$)

 $\lambda_{\gamma\gamma'} < 1.4 \cdot 10^{-20} \text{ s}^{-1}, T = \ln 2 / \lambda_{\gamma\gamma'} > 1.7 \cdot 10^{12} \text{ yr}, This is huge!$

Counts

- In view of the Lu-thermometry, the final word on limits of α variability from Oklo phenomenon might not have been said
- In contrast to astrophysics, the Lu-176/175 isotopic ratios in
 Oklo are not influenced by the (γ,γ') photoexcitation
- Applicability of the Lu-thermometry to Oklo reactors studies requires improved neutron cross sections measurements for Lu-175 in the thermal energy region

THE END THANK YOU

Absolute Cumulative Fission Yields

Neutron energy (eV)