MEASUREMENTS OF THE SPECTRAL NEUTRON FLUX DENSITY AT IBR2-M EXTRACTED BEAMS

Shvetsov V.N., Kuznetsov V.L., Sedyshev P.V., Zeynalov S.S.

IBR-2M FIRST CRITICALITY FIRST POWER AND COMMISSIONING

Dependence: inverse multiplication/number of FA December 2010 – February 2011

Loading of first fuel assembly into the IBR-2M core December 2010

INN-20, MA

Наименование	Начало	Окончание						
Обеспечение программы физических измерений								
1 цикл	21 мая	1 июня						
2 цикл	18 июня	29 июня						
3 цикл	24 сентября	5 октября						
4 цикл	22 октября	2 ноября						
5 цикл	12 ноября	23 ноября						
6 цикл	10 декабря	21 декабря						
ППР-2012	2 июля	3 сентября						

А.В.Виноградов

А.В.Долгих

ALUSHTA

Q

Главный инженер ЛНФ

Главный инженер ИБР-2

Current state

23.05.2012 10:39:48 1896 18

Test cycle Nov 14-25 2011

Measurements procedure

Cit.	4 7	The second second			br2m_beami_spectra_n	ewals. [Compatibility Mode] - Mil	tresoft Excel			
-	Home Insert Pag	e Layout Formulas	Data Review	View Developer Autodes	k Vault Acrobat					
Normal	Page Page Break Coth Layout Preview View Warkbook Views	ons Aul st Streen	✓ Formula Bar es ✓ Headings ge Bar ShowAtcle	Q Q Zaom 100% Zoom W	New Arrange Freese Indow All Panes - I Unit	L J. Were Side by Side L Sendronous Scrolling de 32 Nexet Window Pusition Win Window	Save Switch M	iacros		
-	J1367	• (* L	=I1367/(F1366-	-F1367)						
	A	В	С	D	E	F	G	н	1	J
1	Номер канала	Ширина кана ла в квантах кодировщик а (125 нс = 1/8MHz)	Положение середины к анала в ква нтах кодиро вщика	Время от стартов ого импульса, со ответствующее с ередине временн ого канала, мксе к	Время от начала импульса электр онов, соответств ующее середине временного кана ла, мксек	Энергия нейтронов, соответствующая се редине временного канала,еV (пучок 12 L=26 m)	Счета камер ы за 3600 се кунд	Сечение 235 ур ана при энерги и Е, см*2	Удельная плотно сть потока нейтро нов при энергии Е, н/см2/сек dl/(N_U [[cm]] ^(- 2)] · t[sec] · S[[cm]]] ^2] · σ[[cm]] ^2])	Удельная плотнос ть потока нейтрон ов при энергии E, н/см2/eV/сек dl/(N_U [К сm 〗 ^(- 2)] • t[sec] • S[К сm 〗 ^2] • σ[К сm 〗 ^2 1)
2	91	256	128	16	-3184	3.48540E-01	0	1.56943E-22	0.00000E+00	
3	2	256	384	48	-3152	3.55653E-01	10	1.55365E-22	2.04451E+02	-2.87437E+04
4	3	256	640	80	-3120	3.62986E-01	10	1.53788E-22	2.06548E+02	-2.81674E+04
5	4	256	896	112	-3088	3 70548E-01	7	1.52211E-22	1.46082E+02	-1.93178E+04
6	5	256	1152	144	-3056	3 78349E-01	7	1.50633E-22	1.47611E+02	-1.89226E+04
7	6	256	1408	176	-3024	3.86399E-01	8	1.49056E-22	1.70484E+02	-2.11788E+04
8	7	256	1664	208	-2992	3.94708E-01	7	1.47479E-22	1.50769E+02	-1.81443E+04
9	8	256	1920	240	-2960	4.03288E-01	9	1.45901E-22	1.95941E+02	-2.28360E+04
10	9	256	2176	272	-2928	4 12152E-01	10	1.44324E-22	2.20092E+02	-2.48320E+04
11	10	256	2432	304	-2896	4.21310E-01	16	1.42747E-22	3.56038E+02	-3.88745E+04
1365	1364	150	144125	18015.625	14815.625	1.60975E-02	391	7.30278E-22	1,70071E+03	4.16616E+07
1366	1365	150	144275	18034.375	14834.375	1.60569E-02	385	7.31202E-22	1.67250E+03	4.11263E+07
1367	1366	150	144425	18053 125	14853.125	1.60163E-02	392	7.32126E-22	1.70076E+03	4.19800E+07
1368	1367	150	144575	18071.875	14871.875	1 59760E-02	410	7.33050E-22	1.77661E+03	4.40187E+07
1369	1368	150	144725	18090.625	14890.625	1.59358E-02	393	7.33974E-22	1.70080E+03	4.23001E+07
1370	1369	150	144875	18109.375	14909.375	1.58957E-02	347	7.34899E-22	1.49984E+03	3.74432E+07
1371	1370	150	145025	18128.125	14928.125	1.58558E-02	362	7.35823E-22	1.56271E+03	3.91602E+07
1372	1371	150	145175	18146.875	14946.875	1.58161E-02	356	7.36747E-22	1.53488E+03	3.86080E+07
1373	1372	150	145325	18165.625	14965.625	1.57765E-02	355	7.37671E-22	1.52865E+03	3.85963E+07
	M beam9_27m bear	n12_26m beam4_17	.8m beam2 beam	11a beam5 beam8 beam	12_rawdata_beam2rawdata	Sheet2 🗇				dilation and the second second

6 2012, ALUSHTA

Beam #11a

Energy (eV)

Energy (eV)

Energy (ev

Energy (eV)

Energy (eV)

At beam#4 we come to the prompt count rates on the level of several tenth kHz. So it was necessary to check the dead time of the measurements system and possible miscounts. To do that the measurements have been done with different main collimators.

Adjustable collimator 22mm

2mm Adjustable collimator 22mm + ISINN-20, MAY 21-26 2012, ALUSHTCd shutter

ISINN-20, MAY 21-26 2012, ALUSHTA

Beam #2, no selector

Beam #2, selector at 6 мэВ

leigy (ev)

Beam #1 estimation of the count rates

TOF channel

Beam #1 estimation of the count rates

Beam #1 estimation of the count rates

Conclusions

- During preliminary measurement we came across with dead time of electronics, caused by long relaxation time of conventional charge-sensitive preamplifier. In this connection special design of preamplifier was made and tested at high intensity beam line.
- Tests have confirmed the validity of our measurements at flight paths where we forced to reduced the target area in order to avoid preamplifier saturation. With new design we do not need reduction of counting intensity up to 10⁶ n/sec.

OUTLOOK

- The measurements with activation detectors have been done also;
- PSD detector was used to measure the beam profiles;
- We are planning more detailed measurements for the second half of 2012 with different arrangement of the beam lines;

THANK YOU FOR YOUR ATTENTION

ISINN-20, MAY 21-26 2012, ALUSHTA