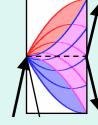


VERIFICATION OF THE WEAK EQUIVALENCE PRINCIPLE WITH LAUE DIFFRACTING NEUTRONS

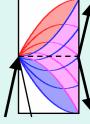

Egor Vezhlev PNPI

ISINN-20

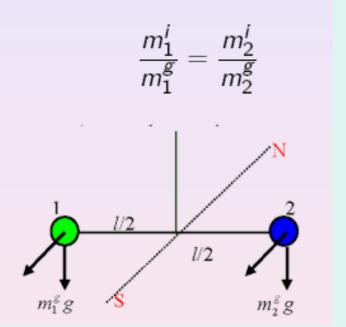
Vezhlev Egor (PNPI)

Motivation

• For Laue diffraction with Bragg angles close to the right one there is a significant diffraction enhancement factor of an external force affecting the neutron*:


$$K_d^{Si} \xrightarrow{\theta_B \sim 84 \div 87^0} \left(10^7 \div 10^8\right)$$

- This factor can be used for observation of small external forces affecting the diffracting neutrons
- For example, this enhancement can be used in *mⁱ/m^g* experiment with cold neutron (*NGrav*)


*V.V. Fedorov et.al. JETP Lett. 85, 82 (2007)

Vezhlev Egor (PNPI)

Verification of WEP. Eötvös and novel EP tests

Torsion balance will be in equilibrium if

L. v. Eötvös (1908) $\leq 5 \cdot 10^{-9}$ Ann. Physik (Leipzig) 68 11 (1922) Adelberger, et al. (1990) $\leq 0.8 \cdot 10^{-12}$ Phys. Rev. D 42 3267 (1990) Baeßler, et al.(1999) $\leq 5 \cdot 10^{-13}$

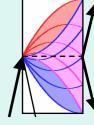
Phys.Rev. Lett 83(18) 3585 (1999)

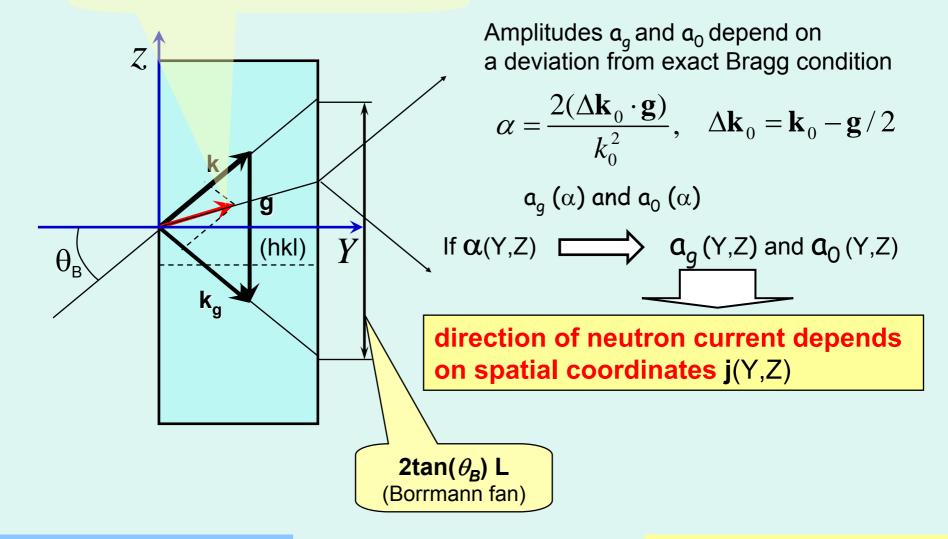
Next talk by G. Kulin

Elementary particles (neutrons)

MiniSTEP (20??) ≤ 10⁻¹⁷; MICROSCOPE (201?) ≤ 10⁻¹⁶

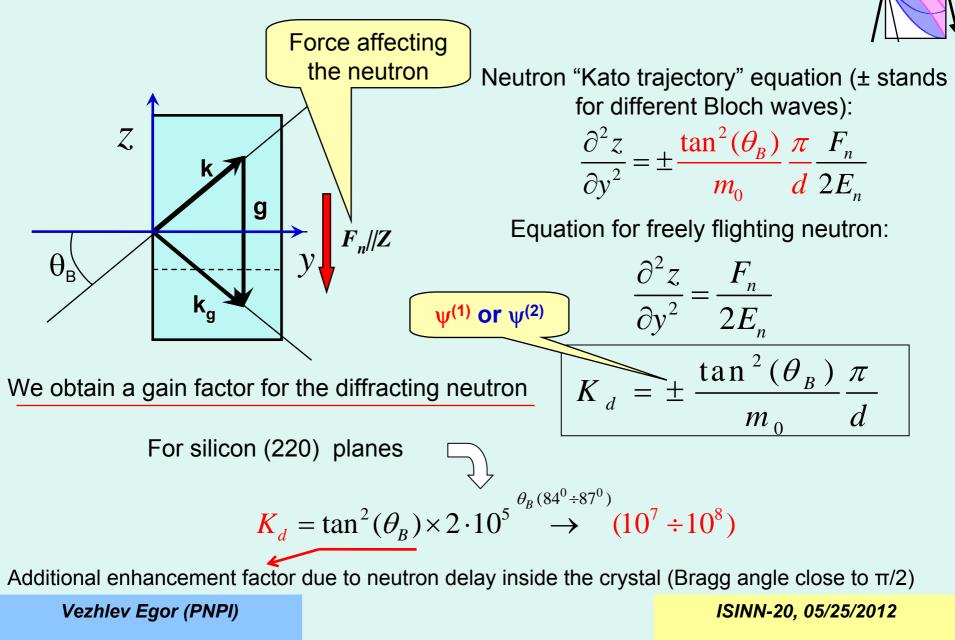
J. Schmiedmayer (1989) $\leq 2.10^{-4}$; A. Frank, et al. (Grav. Exp. with UCN)


Vezhlev Egor (PNPI)

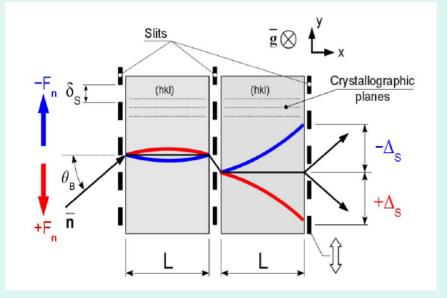

Earth Orbit (Projects)

Neutron trajectory for Laue diffraction

 $\mathbf{j}=\hbar/m(|\mathbf{a}_{q}(\alpha)|^{2}\mathbf{k}_{q} + |\mathbf{a}_{0}(\alpha)|^{2}\mathbf{k})$



Vezhlev Egor (PNPI)



Diffraction enhancement factor

Two-crystal scheme of Laue diffraction

External force shifts the spot of the neutron beam at the exit surface:

$$\Delta_F^1(1,2) = \pm \frac{\pi \tan^2(\theta_B)L^2}{m_0 dE_n} F_n \equiv \pm \Delta_F^1$$

The resolution for this setup is:

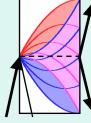
$$W_{F} = \frac{m_{0}E_{n}d}{\pi \tan^{2}(\theta_{B})L^{2}}\delta_{S},$$

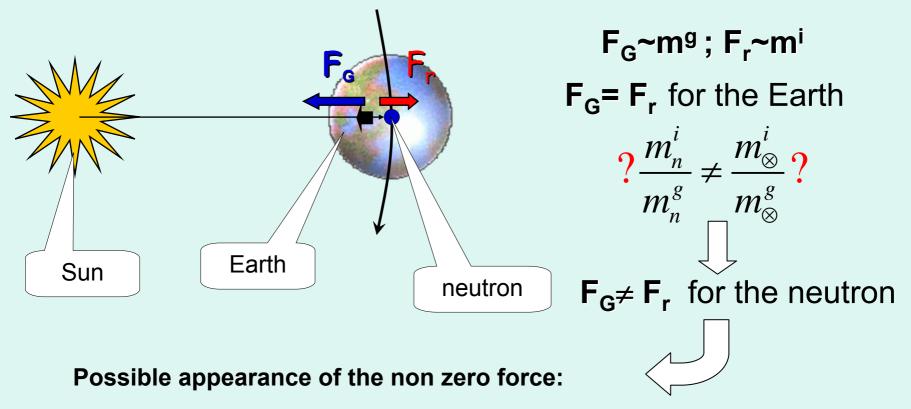
$$\delta_{S} - \text{slit size}$$

For (220) plane of Silicon:

$$L = 10 \, cm, \, \delta_S = 1 \, mm, \, \theta_B = 86^{\circ} \, \Box = V \, W_F \approx 1.5 \cdot 10^{-13} \, eV \, / \, cm \approx 10^{-5} \, m_n g$$
The possible sensitivity of the setup for

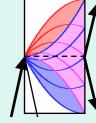
100 days of statistic accumulation (with high flux neutron beam):

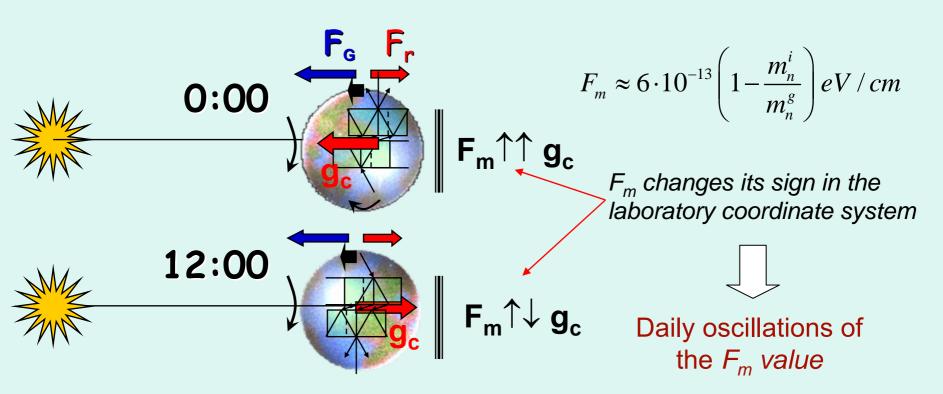

 $\Rightarrow \sigma(F_{ext}) \approx 1,5 \cdot 10^{-18} eV / cm$ 100 kg $\Rightarrow 1 \text{ metre}$


ISINN-20, 05/25/2012

Vezhlev Egor (PNPI)

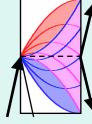
Idea of *mⁱ/m^g* experiment with neutron (I)




$$F_{m} = F_{G} - F_{r} = G \cdot \frac{m_{\otimes}^{g} m_{n}^{g}}{R^{2}} \left(1 - \frac{m_{n}^{i} / m_{n}^{g}}{m_{\otimes}^{i} / m_{\otimes}^{g}} \right) \Big|_{m_{\otimes}^{i} / m_{\otimes}^{g} = 1} \approx 6 \cdot 10^{-13} \left(1 - \frac{m_{n}^{i}}{m_{n}^{g}} \right) eV / cm$$

Vezhlev Egor (PNPI)

Idea of *mⁱ/m^g* experiment with neutron (II)



Our setup is sensitive to F_m oscillations

Vezhlev Egor (PNPI)

mⁱ/m^g experiment with cold neutron (III)

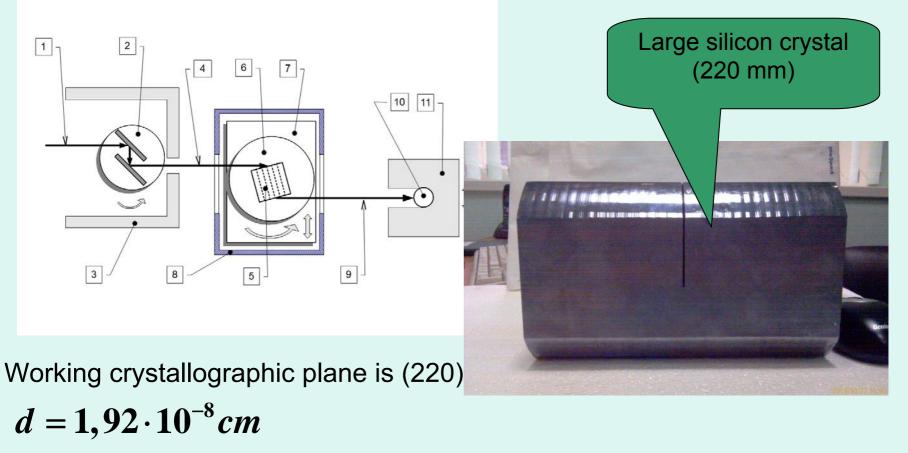
Value of the external force in mⁱ/m^g experiment:

$$F_m \equiv F_G - F_r = G \cdot \frac{m_{\otimes} m_n^g}{R^2} \left(1 - \frac{m_n^i / m_n^g}{m_{\otimes}^i / m_{\otimes}^g} \right) \bigg|_{m_{\otimes}^i / m_{\otimes}^g = 1} \approx 6 \cdot 10^{-13} \left(1 - \frac{m_n^i}{m_n^g} \right) eV / cm$$

The possible sensitivity of the setup:

$$\sigma(F_{ext}) \approx 1.5 \cdot 10^{-18} eV / cm$$

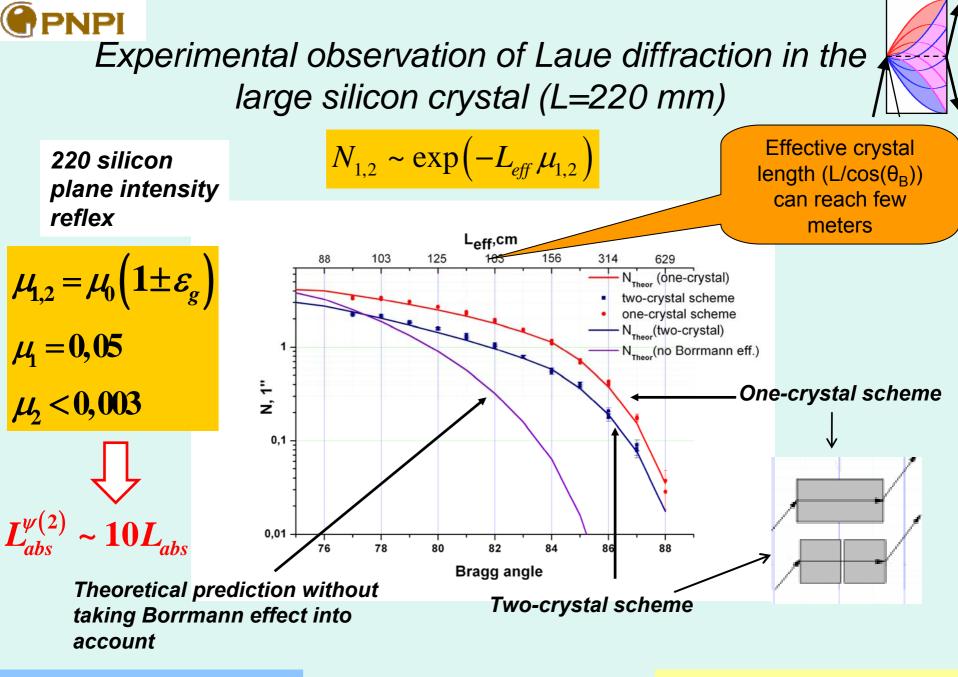
$$\delta_{i/G} \left((m_G - m_i) / m_G \right) \approx 2.5 \cdot 10^{-6}$$


Present accuracy 2.10⁻⁴ (Schmiedmayer, 1989)

Two orders better than the best modern result

Vezhlev Egor (PNPI)

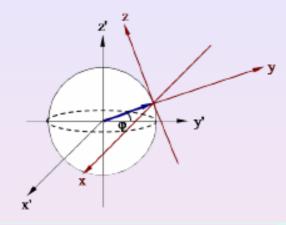
mⁱ/m^g experiment with cold neutron (IV)

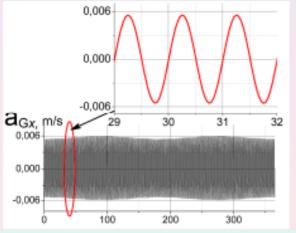


 $\Delta d / d \sim 10^{-8} \, cm^{-1}$

PNPI

Vezhlev Egor (PNPI)

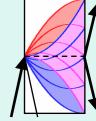



Vezhlev Egor (PNPI)

Influence of noninertial forces*

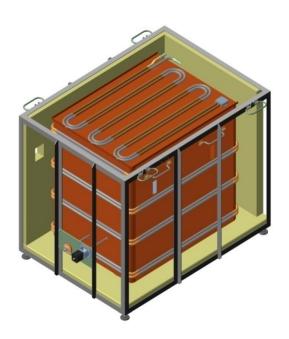
- Tidal forces: Value ~ 10⁻¹⁷ eV/cm Period 12 hours
- 2. Coriolis forces for cold neutron: Value ~10⁻¹² eV/cm Period 12 hours

The force we are looking for: Value~10⁻¹³eV/cm Oscillation period=24 hours

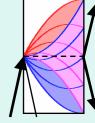

Annual acceleration variations caused by possible EP violation

*estimations are presented in PNPI Preprint-2827 (2009)

Vezhlev Egor (PNPI)


mⁱ/m^g experiment with cold neutron. Improvement of the experimental setup

10⁻⁷ K/sec (≈0.01 K/day) for the working crystal

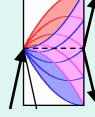

New "double-layer" thermostat was made (start of temperature stability tests – August 2012)



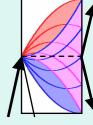
Vezhlev Egor (PNPI)

Our brand new "double-layer" thermostat

Passive shielding (expanded foam)


Still crucial issue – placement of the rotating stages and other heat emitting mechanisms - Active shielding (flowing water)

Vezhlev Egor (PNPI)


Summary and future plans

- Two-crystal scheme of the Laue diffraction with Bragg angles close to the right one is a very sensitive experimental instrument (resolution to the external force reaches 10⁻¹³eV/cm)
- The uncertainty of measuring inertial to gravitational mass ratio for the neutron (test of WEP) can reach magnitude ~10⁻⁶
- All observed experimental results coincide with theoretical predictions
- Temperature stability tests of the new thermostat at the present time
- Installation of improved setup on the 2nd beam line of WWR-M - end of 2012
- After test experiment installation on high flux research reactor (ILL, PIK,...)

Vezhlev Egor (PNPI)

Thanks for Your attention!

Vezhlev Egor (PNPI)