Correlation between E_{CM}/u and unexplained experimental observables

W. Westmeier¹, R. Brandt¹, S. Tyutyunnikov²

¹Kernchemie, FB Chemie, Philipps Universität, D-35037 Marburg, Germany ²JINR, 141980 Dubna near Moscow, Russian Federation

Normal nuclear reaction studies:

- Thin targets (µm to mm)
- Mono-energetic projectiles

yield differential data

- e.g. Energy loss or cross-sections for
- Reaction mechanisms like: fusion, fusion-fission, deep inelastic, QET, fragmentation, ...
- Reaction products, e.g. individual isotopes
- Production of secondary particles, e.g. $\pi^{+,-,0}$, n, p, d, α ,

Some differential cross-sections are easily modelled:

e.g. total inelastic cross-section

 $\sigma_{i} = \pi R^{2} * (1 - B/\epsilon)$

e.g. quasielastic cross-section

 $σ_{QET} = σ_i - (10π (ħ l(t_m))^2 / (2με))$

Moreover, many excitation functions are well determined

Unexplained experimental observables

A little more complicated:

Reaction in thick targets (>mm) where projectiles lose lots of energy, sometimes even down to the interaction barrier

 $<\sigma_i> = 10 \ \pi \ R^2 * (\epsilon - B - B^* \ln[\epsilon/B]) / (\epsilon - B)$

Experiments that are normally avoided:

Extremely high projectile energies (GeV) on very thick targets where secondary particles also interact

We will deal with exactly this:

Target thicknessseveral cm, up to 60 cmProjectile energies≥ 1 GeV/amu

Consequence:

- integral data (= sum of many differential data?)
- many reactions of secondaries

Modelling via Monte-Carlo

There are only few experimental results available

Experiment (Vassilko et al.): neutron production in 60 cm long Pb-target having 20 cm Ø

Ion	Mass A	Number of neutrons n at 1 GeV per nucleon	Number of neutrons n at 3.7 GeV per nucleon	$\frac{n \text{ at } (\text{E}_{\text{Total}}/\text{A=3.7 GeV})}{n \text{ at } (\text{E}_{\text{Total}}/\text{A=1.0 GeV})}$
Н	1	21.3 ± 0.6	68.1 ± 2.5	3.2 ± 0.2
Н	2	45.8 ± 1.2	157 ± 3	3.4 ± 0.2
α	4	71.2 ± 2.8	277 ± 9	3.9 ± 0.2
C	12	129 ± 5	641 ± 22	5.0 ± 0.3

Theory: Calculations with MCNPX 2.7a

Ion	Mass A	Number of neutrons n at 1 GeV per nucleon	Number of neutrons n at 3.7 GeV per nucleon	$\frac{n \text{ at } (\text{E}_{\text{Total}}/\text{A=3.7 GeV})}{n \text{ at } (\text{E}_{\text{Total}}/\text{A=1.0 GeV})}$
Н	1	23.5	73.4	3.1
Н	2	48.0	118.9	2.5
α	4	77.5	201.6	2.6
С	12	134.8	494.3	3.7

Measurement of neutron density on GAMMA-2

Spallation core : 8 cm diameter, 20 cm or 50 cm long Lead or Copper Moderator: 6 cm thick paraffin

The B-value for production of ¹⁴⁰La is measured on top of the moderator → neutron density

Experiment: Protons on 50 cm Pb-target,

(n,γ) -reactions on top of 6 cm thick paraffin moderator

Calculation with MCNPX: Beam scattering – fast cascade – evaporation neutron transport – n-secondary reactions – (n,γ) -reaction with a neutron spectrum

<Agreement>: @ 1 GeV ± 7%, @ 2 GeV ± 2%

Example: High energy projectiles on a thin Cu-target

"Limited Fragmentation" means: highest cross-section near target mass, the distribution falls with rising ΔA .

"Factorisation" means: product distributions in the same target are similar, just scaling in cross-section with projectile mass and energy.

Limited Fragmentation and Factorisation are always valid in thin targets.

What happens in thick targets (theory)?

- Second target is exposed to less full-energy beam
 = less products
- Additional secondaries with lower energy hit second target
 - = more products just below the target mass

- R₀=N(2)/N(1) is ≤1 far away from the target mass is ≥1 near to the target mass
- As most secondaries have low energies the maximum of R₀ is just below target mass

What happens in thick target (experiment)?

But : not at higher energy !

Calculation with MCNPX cannot fit the experiment

Cross-sections are "pushed" to smaller masses and forward into the second target!

Identical results in a stack of 20 targets of 1-cm thickness

At higher beam energy cross sections are pushed to smaller mass (bigger ΔA) and into forward targets!

It looks as if secondaries would transfer more energy than expected

R of ²⁴Na was determined in many experiments

48 GeV ⁴He+Cu 1.21±0.02 44 GeV ¹²C+Cu 1.24±0.02 72 GeV ⁴⁰Ar+Cu 1.50±0.02 24 GeV ¹H+Cu 1.10±0.02 25 GeV ¹²C+Cu 1.13±0.03 36 GeV ⁴⁰Ar+Cu 1.17±0.02 18 GeV ¹²C+Cu 1.08±0.10 22 GeV ²²Ne+Cu 1.08±0.02

At high beam energy (unexpected) > 1 Maxima in R(A) are far away from target mass

7.3 GeV ²H+Cu 0.90±0.05
4.5 GeV ¹H+Cu 0.98±0.05
4 GeV ⁴He+Cu 0.92±0.01
3 GeV ⁴He+Cu 0.90±0.05
2.6 GeV ¹H+Cu 0.96±0.02
1.3 GeV ¹H+Cu 0.99±0.03

At low beam energy (as expected) < 1 Maxima in R(A) are close to target mass

Neutrons: Comparison with MCNPX calculation

72 GeV	⁴⁰ Ar+Cu	Discrepancy
44 GeV	¹² C+Cu	Discrepancy
44 GeV	¹² C+Pb	Discrepancy
44 GeV	¹² C+U	Discrepancy
7.4 GeV	² H+Cu	ok
14.7GeV	^₄ He+Pb	ok
3 GeV	² H+Cu	ok
7.4 GeV	² H+Pb	ok
6 GeV	^₄ He+Pb	ok
3 GeV	⁴ H+Pb	ok
2 GeV	² H+Pb	ok
1 GeV	² H+Pb	ok

At low energies : Experiment = Calculation At high energies : Experiment >> Calculation

What is the transition energy?

Energy in system is $E_{CM} = E_{lab} * A_T / (A_P + A_T)$

<u>Assumption:</u> It looks as if more energy were transferred (by secondaries?) than expected.

Thus, data are scaled in units of CM energy per nucleon E_{CM}/u

$$E_{CM}/u = E_{CM} / (A_P + A_T)$$

Reaction	E_{CM}/u	$R_0(^{24}Na)$ in Cu(*)		R ₀ (A) in Cu (**)		Neutron emission	
	MeV	≤ 1.00	> 1.00			in GAMMA-2 (***)	
48 GeV	664		1.21		Problem		
⁴ He + Cu			± 0.02				
44 GeV	488		1,24		Problem		Problem
¹² C + Cu			± 0,02				
72 GeV	426		1 <i>5</i> 0		Problem		Problem
⁴⁰ Ar + Cu			± 0,02				
24 GeV	333		1.10		Problem		
¹ H + Cu			± 0.02				
25.2 GeV	279		1.13		Problem		
¹² C + Cu			± 0.03				
36 GeV	213		1.17		<u>Problem</u>		
⁴⁰ Ar + Cu			± 0.02				
18 GeV	194		1.08		Problem		
¹² C + Cu			± 0.10				
22.4 GeV	192		1.08				
²² Ne+Cu			± 0.02				
44 GeV	189						Problem
¹² С + Рb							
44 GeV	168						Problem
¹² C + U							

Transition is between $E_{CM}/u = 168 \text{ MeV} \dots$

..... and 107 MeV

Reaction	$\rm E_{CM}/u$	$R_0(^{24}Na)$	in Cu(*)	$R_0(A)$ in Cu (**)		Neutron emission	
	MeV	≤ 1.00	> 1.00			in GAMMA-2 (***)	
7.3 GeV	107	0.90		o.k.		o.k.	
2H + Cu		± 0.05					
4.5 GeV	69	0.98					
¹ H + Cu		± 0.05					
14.7 GeV	68					o.k.	
⁴He + Pb							
4 GeV	55	0.92					
⁴ He + Cu		± 0,01					
3 GeV	43	0.90		o.k.		o.k.	
² H + Cu		± 0,05					
2.6 GeV	39	0.96					
¹ H + Cu		± 0.02					
7.4 GeV	35					o.k.	
²Н+ Рb							
6 GeV	27					o.k.	
⁴He + Pb							
1.3 GeV	19	0.99					
¹ H + Cu		± 0.03					
3 GeV	14					o.k.	
²Н + Рb							
2.0 GeV	10					0.k.	
¹ H + ԲԵ							
1.0 GeV	5					o.k.	
¹ H + ԲԵ							

<u>Conclusion:</u> there is a critical energy E_{CM}/u above which unexpected results are measured

- neutron multiplicity exceeds calculations
- "limiting fragmentation" concept fails
- R_0 of distant fragmentation products (e.g. ²⁴Na from Cu) is >1

The critical energy Ĕ is around 107 MeV < Ĕ < 168 MeV (This is NOT "cold fusion" or "poly-water" – it's real)

n.b. in this energy range there is another (the same?) critical energy the the Hagedorn-limit

(R. Hagedorn, Supp. Al Nuovo Cimento <u>2</u> (1965) 147)

Hagedorn: There is a limit in nuclear temperature, T_0 , above which it is easier to produce particles than to increase T From elastic scattering : $T_0 = 158 \pm 3$ MeV

Proposed experiment:

- irradiate 2 thick Cu-targets with ¹²C, 2*10¹² in each experiment
- energies : 0.6, 0.9, 1.1, 1.2, 1.3, 1.5 and 1.8 GeV/u
- γ-spectrometric measurement of products, determine R_(A)
- if possible, independent measurement of neutron densities

If there is a critical energy (limiting temperature) then one should find a gradual transition from explained to unexplained results

How much is neutron density enhanced?

- a) Experimental B-value of ¹⁴⁰La is a measure of neutron density
- b) Calculate the number of neutrons N per projectile atom
- Thus, V = B/N characterizes the neutron density in units of the expected (calculated) density

In "normal" reactions : $V = 0.319 \pm 0.017 [10^{-5} g^{-1} neutron^{-1}]$ In "other" reactions: $V = 0.963 \pm 0.043 [10^{-5} g^{-1} neutron^{-1}]$ (all 44 GeV ¹²C)

Factor 3.0 ± 0.2

We do not know the physics behind But we do have a means of classification

This is NOT "cold fusion" or "poly-water" – it's real

Thank you!

References:

- R.G. Vassilko et al., Atomic Energy <u>79</u> (1995) 257 (in russian)
- W. Westmeier and U. Brosa, Z. Phys. A <u>312</u> (1983) 261
- W. Westmeier et al., Radiochimica Acta 93 (2005) 65
- R. Hagedorn, Supplemento Al Nuovo Cimento 2 (1965) 147
- R. Brandt et al., Phys. Rev. C45 (1992) 1194
- O.V. Levitskaja, XVIII. ISHEPP (2006), personal communication

Experiments at very very high energies

Brandt et al. (1992): R(²⁴Na) at 7000 GeV ³²S + Cu is 1.8 ± 0.1

Levitskaja: very short mean free path at 32500 GeV ²⁰⁸Pb in emulsion (H, C, N, O, Br, Ag)

(Alexander et al. (1957): MFP(π^+) 11 ± 2.4 cm; expected 31 ± 2 cm)

10³ 10⁴ 10⁶ 10⁶ 10⁷

B-value of reactions with spallation neutrons

- Spallation neutrons have a very broad spectrum
- Cross-section depends strongly on ${\sf E}_{\sf n}$

$$\sigma_{tot} = \int_{E} \sigma_{E} \cdot I_{E} \partial E$$
 (no way)

B = Number of product atoms per one projectile per 1 gram of target material

B goes up with I (if spectrum unchanged)

