

Internationales Hochschulinstitut Zittau

Muons from mobile accelerators in large-scale environmental analysis

Stefan Fränzle, IHI Zittau (D); TUD Deptm. of Bio- and Environmental Sciences, Head of Labor. of Environmental Analytics

Where we start from

IHI Zittau; Dresden Tech (TUD)

Site of old lignite pits → man-made lake landscape, strongly mixed, chemically still active topsoils

Background in environmental and technical analytical chemistry, electrochemistry; interested in "more physical methods" to cover larger areas by one screening, rather than analyzing samples from (n + 1,001) bore-holes

Which kinds of data do natural (soil, bio-mass) samples reveal without prior impact of chemicals or ionizing radiation? \rightarrow activation by cosmic

2

radiation **muons**

Lake Olbersdorf, residual matter – – – mound

Fe(III) oxide precipitations from aq. Fe²⁺ trickling to the surface from a perturbed soil arrangement; (**down right**): I am **not** going to speak about this today: making signal amplification right from soil heterogeneity, Fe richness, SC properties!

Zittau and N part of Lusatian Mountains (D/Cz.R.); back centre: Lake Olbersdorf inundated lignite pit, residue heaps

Why muons, and which ones?

- Muons can penetrate thick samples but are suitable to detect fairly small cavities therein
- μ^+ almost behave like protons in condensed media, forming chemical bonds (e.g. (μ -OH; muonic water) and get accessible to ESR during the μ s before they decay
- μ^{-} are kind of "heavier electrons" (lepton universality), get trapped by cations or neutral molecules after cooled down to some 40 eV (v \approx 260 km/s) interacting with heavy atoms, > 75 eV for very light ones, only then take part in chemical binding –
- but that's **not** the entire story!

Inverse β decay: electron capture (comparison)

- Electrons (single or pairs [e.g. with ⁷⁸Kr, ¹³⁰Ba, ¹⁵²Gd besides of α decay in latter: 10¹⁴ a]) can be trapped by protons (**up** quarks therein) by way of weak interaction, but
- For x**s** orbitals even, **electron** probability to be inside the nucleus at a given time is small
- Muons are 207 times heavier than electrons \rightarrow average muon/nucleon [µ⁻/u quark]-distance 207 times smaller than size of electronic K, L orbitals \rightarrow muon density in nucleus (207)³ \approx 10⁷ times larger than with electrons, moreover: what would take 10 s with inv. β decay, will be done wihin << 1 µs by µ⁻ because
- much more energy is to be gained/released by muon capture hence probability of corresponding weak interaction per period of time is much larger
- → once negative muons were trapped to a single atom, they are likely to react with the nucleus although short-lived

This reaction as a rule produces radionuclides

Quench, capture energy and final angular momentum distribution for muon quenching by ⁴He; subsequent nuclear reaction likely only for L = 0, 2, 4... (best: L = 0 [s orbitals, right picture])

(lepton)⁻ + **u** q. $\rightarrow \nu$ + **d** q. = (lepton)⁻ + p $\rightarrow \nu_{(L)}$ + n (λ^{0}); always exothermic for L = μ

 $\text{ or } \tau$

The probability to find a muon (brown crystal) in 1s or 2s..., states somewhere increases from outside when approaching the nucleus (quarks shown) [light to dark blue shades]

Make muons, pass them to the ground

- Size, kind of μ source: GeV protons, about car-sized
- Electromagnetic deflection
- Range of muons, range of secondary γ photons \rightarrow measurements must be made parallel to some surface (grass-roots level, along a cliff or around a borehole)
- Lifetime of, penetration by "moderately relativistic" muons \rightarrow beam will pass several 100 m (τ_0 *c \approx 660 m) \rightarrow an area of several times 50 m in diameter can be sampled from a single point of muon injection \rightarrow rapid analysis at high spatial resolution
- Activation of U, Pu by simple capture producing the typical prompt Moseleytype γ radiation rather than causing nuclear reactions which give away hidden
 - nuclear materials

Range, capture rate of cosmic rad. μ^- vs. amount of overlying sediment matter, rocks: decline starts at $\approx 1 \text{ kg/cm}^2 \approx 4.5 \text{ m}$ layer,, reasonable yields still at $20 \text{ kg/cm}^2 \approx 75 - 80 \text{ m}$ layer; average primary energy higher than in soilborne irradiation

Kinds of nuclear reactions secondary to (delay due to) μ^{-1} capture by nuclei (w.i.)

- Pure γ emission (daughter nuclide is stable but formed in an excited state), to be distinguished from Auger-Moseley emissions shifted into γ by muon mass
- **n-** or p **emission**
- **Fission** (cp. β dF, disc. at Dubna on ²³²Am; β dF may occur rarely if energy gain < fission barrier)
- Fission is also possible by a closely orbiting muon (1s- or 2s states) pulling opposite (proton) charges in nucleus forth and back periodically, making the nucleus vibrate (lepton, purely electromagnetic effect)
- n emission prevails in moderately heavy nuclei, commonly just one neutron is detached (excitation energy $\approx 10 \text{ MeV}$; $\rightarrow {}^{\text{m}}\text{E}^{\text{Z}} \rightarrow {}^{\text{m-1}}\text{E}'{}^{\text{Z}-1}$, e.g. ${}^{68}\text{Zn} \rightarrow$ ${}^{67}\text{Cu}$ (T_{1/2} = 62 h; γ = 185 or 93 keV); pattern of products from common topsoil, sand, pig iron,
 - carbonate etc. minerals (that is, C, N, O, Si, S, Ti, Ca, Mg or Fe isotopes)

Beta-delayed fission yields vs. energy excess during decay: a rather rare event which suggests most heavy nuclei will behave well during $\mu^$ capture, rather than undergo fission and make "atypical" daughter nuclides (for comparison only)

Examples of emitting nuclides

- Available from most elements by one pathway or another
- Positron emitters, annihilation γ from Cd, Sn, Ba, Ce, Nd, and Hg → γ (341; 511 keV) useful for summarizing toxicological indications (Cd, Hg, Ba)! [table]
- Fission products

8

"common" β⁻ emitters
even from very light
elements

element	Short-lived	Natural	Natural	β^+ emission,
	isotopes of (Z –	abundance of	abundance of	nuclide
	1); half-life	М	(M + 1; M + 2)	
Cd	¹⁰⁵ Ag 41.3 h; ¹⁰⁶ Ag 24 min		^{106;108} Cd about 1% each	β^{+} in ¹⁰⁵ Ag, ^{106m} Ag; extremely hard y in ¹¹² Ag (3.1 h; 1387 keV) and ¹¹⁵ Ag (20 min; 2156 keV)
Sn	¹¹⁰ ln 4.9 h; ^{110m} ln 69 min; ^{111m} ln 7.7 min; ¹¹⁴ ln 72 s;		¹¹² Sn 1.0%	¹¹⁰ In β ⁺
Ва	¹²⁹ Cs 32.06 h; ¹³⁰ Cs 29.2 min; ^{134m} Cs 2.9 h; ^{135m} Cs 53 min		^{130;132} Ba about 0.1% each	Almost purely β^+ in ^{129;130} Cs (^{131;132} Cs but too long-lived for efficient detection)
Ce	¹³⁵ La 19.5 h; ¹³⁶ La 9.9 min; ¹⁴⁰ La 40.2 h; ¹⁴¹ La 3.9 h; ¹⁴² La 91 min		¹³⁶ Ce 0.19%	^{135;136} La (100% each)
Nd	¹⁴⁰ Pr 3.4 min; ¹⁴² Pr 19.1 h; ^{142m} Pr 14.6 min		¹⁴² Nd 27.1%	¹⁴⁰ Pr β ⁺ 100%
Hg	^{196m} Au 8.1 s; ^{197m} Au 7.73 s; ²⁰⁰ Au 48.4 min; ²⁰¹ Au 26 min; ²⁰² Au 28.8 s; ²⁰³ Au 53 s; ²⁰⁴ Au 40 s	¹⁹⁶ Hg 0.15%	¹⁹⁸ Hg 10.1%	y deexcitation daughter ¹⁹⁶ Au (6.17 h): β ⁺ = 92.8%; plus fission products

"Good" vs. "poor" absorbers

- Water content of sample and muon moderation efficiency
- Production of β^+ emitters from certain prich nuclides (precursors ...) \rightarrow annihilation radiation among the γ spectrum
- Particularly hard γ radiation emitters in spectrum
- C-, N-, S- vs. O capture efficiency → how is the chance to detect oxidation state of sample, or even content of organic matter?
- μ dF of heavy nuclei, mainly Pb: an analytical nuisance or a chance to enhance sensitivity? (rate of μ dF [cp. β dF: always << 1% except for ²⁴²Es]?); exper. muonogenic fission yield: 13±5 % in ²³⁸U, some 45% in ²³⁹Pu, < 2% for ²³²Th (cp. thermal neutrons)
- Typical traces of Hg, Tl, Bi and lighter Pb isotopes are detected only due to fission (look to right!)

βdF yields increase by **factor 10 with every** MeV ΔεB_f → about 3% at + 3MeV; efficient excess some 5 MeV at Pb (M ≠ 208), → y_{µdF} > 50%; Tl, Bi..., (M/Z)_{prod} ≈ 2.6 in µdF products with $Z_{start} \ge 80$ → few s to min; no perturbation of Sn, Ba, REE detection, but fission-less detection of Pb only as ²⁰⁶Tl (4.2 min, $\gamma = 803$ keV)

Safety considerations: where can it be done?

- We do not do anything else than is caused by cosmic radiation anyhow though at elevated rates
- Control of beam: loss of electromagnetic deflection means directing beam perpendicularly downward into massive bedrock
- Life-times, amounts of radionuclides formed (few GBq along 100m/20 cm diameter flux tube for minutes to weeks)
- Effects on local biota?! µSR with low energy µ⁺ is used for making pictures [µ-RT], not destroying tumour cells, even in human brain tissue!

Slightly rough forest terrain in which such measurements may be made (for illustration only, displaying biogenic Fe oxide deposits above a reducing bottom environment)

Estimating analytical sensitivities

- Several γ/min at given energy readily detectable by Ge;Li detector, < 10% of photons directed into upward segment, some 70 80% absorption in thicker soil layers → about 2 Bq must be produced (≈ 0.1 Bq/kg in 30*30*20 cm activated volume)
- 10^5 muons/s back in 2002, today some 10^7 ; equal-intensity pathway some 10 m, high relative yields in abundant isotopes, but annihilation γ from rare ones ($\leq 1\%$ except for ¹⁹⁸Hg) only, average radionuclide lifetime several times 10^3 s means
- Saturation activation after some min by $\approx 10^9 \,\mu^2$ total dose in column (some 10^7 in sampling segment of flux tube)
- ppm or upper-ppb determination levels should be reached for elements which produce min- to hour-lifetime nuclides from fairly abundant isotopes
- → competes with ICP-OES, inferior to ICP-MS but you need no drilling and no preparation/digestion of hundreds or thousands of individual samples, and you won't destroy information on local structures, redox conditions, organic contents!!

Thank you for your kind attention – spassiba!