PRODUCT YIELD RATIOS IN PHOTO-FISSION REACTIONS $(\gamma, f), (\gamma, nf)$ ON ²³⁵U

Vishnevsky I. N.¹, Zheltonozhsky V. A.¹, Savrasov A. N.¹, <u>Rovenskykh E. P.²</u>, Plujko V. A.², Gorbachenko O. M.²

¹ Institute for Nuclear Research, NAS of Ukraine, Kyiv, Ukraine ² Nuclear Physics Department, Taras Shevchenko National University, Kyiv, Ukraine

Plan

- Aim of the study
- Experimental methods
- Photo-fission spectrum of fragments
- Values of isomeric yield ratios
- Comparison with other results
- Conclusions

Scientific interest and purpose of the study

- Configuration of nuclear system at scission point
- Scientific interest for nuclear science and engineering
- Description of fission process using isomeric yield ratios for ²³⁵U
- Effect of (γ, nf) fission channel
- Study of characteristics of nuclei during descent from fission barrier and near the saddle point

Experimental method

- ²³⁵U samples (aluminum liner covered of thin layer of uranium with thickness 100 mkg/sm²) were irradiated by bremsstrahlung photons from microtron M-30 IEP NAS, Uzhgorod, Ukraine
- The spectrum of bremsstrahlung gamma rays formed after complete inhibition of the electron beam on Tatarget with 2 mm thickness
- Maximum energy of gamma-rays 17 MeV

Measured reactions and thresholds

- E (γ, f) = 5,5 MeV
- E (γ, n) = 5,3 MeV
- E (γ, 2n) = 12,1 MeV
- E (γ, p) = 6,7 MeV
- E (γ, t) = 10 MeV
- E (γ, ³He) = 9,5 MeV
- E (γ, α) = 4,7 MeV
- E (γ, np) = 11,9 MeV
- E (γ, 2p) = 12,4 MeV

Possible reactions for maximal bremsstrahlung energy - 17 MeV

Scheme of the experiment

Characteristics of experimental facilities

- Maximal energy of bremsstrahlung photons 17 MeV
- Average current of electrons 1,5 mkA
- Time of one impulse 1 mks
- Frequency of impulses 1000 Gz
- Outlet size of electron beam 12x4 mm
- Energy error 0,5 %

Photo-fission spectrum of ²³⁵U for isomeric pair ^{134mg} I

Photo-fission spectrum of ²³⁵U for ^{134mg} I and ¹³⁴Te

Photo-fission spectrum of ²³⁵U for isomeric pair ^{134mg} I and ¹³⁴ Te

- The peaks were fitted by Gaussian curves
- Method of least square was used and chi-square value was calculated for each peak
- Intensities of the all peaks with uncertainties were found using Win-Spectrum code

Photo-fission spectrum of ²³⁵U, for isomeric pair ^{133mg} Te

E, kev

Photo-fission spectrum of ²³⁵U, for isomeric pair ^{133mg} Te and ¹³³Sb

Photo-fission spectrum of ²³⁵U for isomeric pair ^{135mg} Xe

Photo-fission spectrum of ²³⁵U, for ^{135mg} Xe and ¹³⁵I

Data processing

- Set time (2 hour) was divided on 5 individual intervals according to half-live times
- Data set from individual intervals was used for every fragments to determine their yields

Results of measurements

Nuclide	E, KeV	Q. yield %	δQ. yield %	З	δε	T 1/2	S	δS
1351	546,0	7,2	0,1	6,6	0,1	6,57 h	42,0	4,3
135mXe	527,0	81,0	0,5	6,8	0,1	15,29 min	133,0	15,6
135gXe	250,0	90,0	0,2	10,5	0,2	9,14 h	120,0	20,0
133Sb	1306,0	43,0	1,3	3,3	0,1	2,5 min	30,0	3,3
133mTe	913,0	55,0	3,0	4,1	0,2	55 <i>,</i> 4 min	78,0	13,8
133gTe	312,0	62,0	1,8	9,4	0,1	12,5 min	367,0	32,3
134Te	767,0	29,0	1,2	4,8	0,1	41,8 min	92,0	11,9
134ml	272,0	79,0	3,0	10,4	0,1	3,69 min	243,0	15,1
134gl	847,0	95,0	1,9	4,4	0,1	52,6 min	149,0	18,6

• The results were used to calculate the isomeric yield ratios of fragments of photo-fission of ²³⁵U by Isomer code

Isomeric yield ratios of photo-fission fragments

	σ _m /σ _g	$\delta(\sigma_m/\sigma_g)$	$\delta(\sigma_m/\sigma_g),\%$
134mg	2,8	0,6	21,6
^{133mg} Te	2,8	0,7	25,2
^{135mg} Xe	0,15	0,03	24,4

- The uncertainties correspond to statistical ones
- The rules of indirect measurements were applied
- Previously obtained values of isomeric ratios for maximum energy of irradiation - 9.6 and 20 MeV allow us to do comparative analysis for considered elements

Comparisons with previous measurements

Nuclide	²⁴¹ Am	²⁴¹ Am	²³³ U	²³³ U	235 U	²³⁵ U	
	Emax =	Emax =	Emax =	Emax =	Emax =	Emax =	
	3.0 IVIE V	17 IVIEV	10.5 MeV	17 IVIEV	17 IVIEV	9.6 Mev	
^{90mg} Rb ₃₇	1.1(3)	0.6(1)	0.9(3)	0.7(3)	-	0.53(8)	
^{133mg} Te ₅₂	1.6(2)	1.3(2)	3.2(8)	3.2(9)	2.8(6)	2.3(3)	
134mg	3.0(5)	2.0(4)	1.33(14)	1.8(5)	2.8(7)	0.65(5)	
^{135mg} Xe ₅₄	0.18(1)	0.84(8)	0.14(2)	0.38(4)	0.150(36)	0.142(14)	

	σm/σg	δ	E _{max} = 20MeV
^{133mg} Te ₅₂	2,4	0,3	Gent Belgium "82
134mg 53	1,13	0,06	Gent Belgium "84

Conclusions

- Isomeric yield ratios for ²³⁵U photo-fission products for maximal energy of bremsstrahlung photons – 17 MeV were measured for the first time
- Possible influence of (γ , nf) fission channel on experimental results (isomeric pair $^{134mg}I_{53}$)
- The average angular moments of the fission fragments are under consideration and comparison with theoretical predictions in the Talys 1.4 code

Thank you for your attention!