Parity-Violating Neutron Spin Rotation Measurements at NIST

ISINN-21 Alushta, UK May 20-25, 2013

Neutron Spin Rotation (NSR) Collaboration

W.M. Snow¹, E. Anderson¹, L. Barron-Palos², C.D. Bass³, T.D. Bass³, <u>B.E. Crawford⁴</u>, C. Crawford⁵, W. Fox¹, J. Fry¹, K. Gan⁶, C. Haddock¹, B.R. Heckel⁷, D. Luo¹, M. Maldonado-Velazquez², R. Malone⁴, D. M. Markoff⁸, A.M. Micherdzinska⁹, H.P. Mumm¹⁰, J.S. Nico¹⁰, A.K. Opper⁹, S. Penn¹¹, S. Santra¹², M.G. Sarsour¹³, S. van Sciver¹⁴, E. I. Sharapov¹⁵, H.E. Swanson⁷, S. B. Walbridge¹, H. Yan¹, and V. Zhumabekova¹⁶

Indiana University / CEEM¹ Universidad Nacional Autonoma de Mexico² Thomas Jefferson National Accelerator Facility³ Gettysburg College⁴ University of Kentucky ⁵ University of Winnipeg⁶ University of Washington⁷ North Carolina Central University⁸ The George Washington University ⁹ National Institute of Standards and Technology¹⁰ Hobart and William Smith College ¹¹ Bhabha Atomic Research Centre ¹² Georgia State University ¹³ Florida State University¹⁴ Joint Institute for Nuclear Research ¹⁵ Al-Farabi Kazakh National University ¹⁶

Support: NSF, NIST, DOE, CONACYT, BARC

N-N Weak Interaction

• HWI mediated by W[±] and Z^o but

short range (~0.01 fm) << size of nucleon (~1 fm)

...yet responsible for parity violating effects in N-N interactions, nuclear decay, atomic structure, anapole moments

• Weak/strong ~10⁻⁶

Use parity violation to isolate Weak contribution

Meson Exchange

 DDH model – exchange of 3 lightest mesons, leads to six coupling constants

$$f_{\pi}, h_{\rho}^{0}, h_{\rho}^{-1}, h_{\rho}^{-2}, h_{\omega}^{0}, h_{\omega}^{-1}$$

 Different experiments sensitive to different linear combinations

Parity Violating Spin Rotation

• Acquired phase shift is a function of index of refraction

 $\phi = \operatorname{Re}(n)k_o z$

 Index of refraction depends on forward scattering amplitude, which includes PNC term (polarized neutrons, unpolarized target)

$$n = 1 + \left(\frac{2\pi}{k^2}\right) \rho \left[f_{PC} + f_{PNC}\left(\vec{\sigma}_n \cdot \vec{k}_n\right)\right]$$

• Two helicity states acquire different phases \rightarrow rotation angle.

$$\phi_{PNC} = \phi_+ - \phi_- = 4\pi\rho_z f_{PNC}$$

ϕ_{PNC} for Transversely Polarized Neutrons

$$\sin(\phi_{PNC}) = \frac{1}{PA} \frac{N^+ - N^-}{N^+ + N^-}$$

• Expected Size:

$$\frac{d\phi_{PNC}}{dz} \sim 10^{-7} \text{ to } 10^{-6} \text{ (rad/m)}$$

- Experimental challenge
 - Reducing $\vec{\sigma} \cdot \vec{B} \Rightarrow \phi_{PC}$
 - effectively canceling what is left
 - controlling noise
 - controlling other systematics

Canceling ϕ_{PC}

- Vertical field of "Pi-coil" reverses rotation angle
- Detector sensitive to $\varphi_{_{\rm BKG}}$ $\varphi_{_{\rm PNC}}$
- $\varphi_{\rm BKG} = {}^{\rm dn} \varphi_{\rm PC} {}^{\rm up} \varphi_{\rm PC} \sim 0$

Canceling ϕ_{PC} – Side-by-side experiments

- $\varphi_{\rm BKG} = {}^{\rm dn} \varphi_{\rm PC} {}^{\rm up} \varphi_{\rm PC}$ is insensitive to target location
- Change target locations
- Double subtraction isolates $\phi_{\rm PNC}$ and reduces effects of reactor fluctuations

Cold Neutron Guide hall at NCNR

Main measurement – 3 reactor cycles January – May 2008, Systematic studies – 1 reactor cycle June 2008. ^{58}Ni guide $\theta_{c}\text{=}2.1$ mrad/A (m=1.2)

NG-6 Polychromatic beam

Reactor 20 MW (fission neutrons) Moderation D₂O Thermal neutrons Moderation LH Cold neutrons T=20K

Spin Rotation Apparatus

Measures the horizontal component of neutron spin for a vertically-polarized beam

- 100microGauss in target region
- float glass waveguides $\theta_c = 1.2 \text{ mrad/Å} (\text{m}=0.68)$
- Be filter -> spectrum above 4Å limits under rotation by pi-coil

- Output coil rotates vertical spin by +90° or -90° (1 Hz)
- Vertical super-mirror analyzer analyzes component due to rotation

Data sequence

A spin rotation angle is determined from each pair of output coil states (+, -).

Reversing the π -coil current cancels any neutron spin rotations from stray fields outside the coil.

 Π -coil (-, 0, +) state is repeated five times to form a 300-s target sequence. The liquid helium is then drained and filled in the complementary state in 300– 350 s, and the previous sequence is repeated to form a target cycle.

Polarizing Super Mirror

slide courtesy A. Micherdzinska

$$n = 1 - \left[\frac{2\pi\rho\hbar^2 a}{p^2} \pm \frac{\mu(B-H)m}{p^2}\right] \equiv 1 - \frac{\theta_{c\pm}^2}{2}$$

- spin-dependent scattering from magnetized mirrors
- Alternating layers of magnetic surface (cobalt) and absorptive layer (titanium and gadolinium); 1mm separation;
 Placed in 300 G permanent box.
- Typical polarization: 98%; transmission: 25%

Target Chamber

pi-coil

Separate Left and Right chambers upstream and downstream of pi-coil C.D. Bass NIM A **612** (2009) 69-82

Segmented ³He ionization chamber

- ³He and Ar gas mixture
- Neutrons detected through $n+{}^{3}He \rightarrow {}^{3}H+{}^{1}H$
- High voltage and grounded charge-collecting plates produce a current proportional to the neutron flux
- 4 Detection Regions along beam axis velocity separation (1/v absorption)

S.D.Penn et al. [NIM A457 332-37 (2001)]

charge collection plates are divided into 4 quadrants (3" diam) separated L/R and U/D beam

Reactor Noise Suppression

 $\phi_0 = \frac{L-R}{2}$

•Large noise from beam intensity fluctuations is suppressed

•Width of LEFT-RIGHT difference of spin rotation angles is consistent with VN neutron counting statistics noise to ~10% accuracy

Systematic Effects

Diamagnetism of LHe	$\Delta B/B \approx 6E-8$	2E-9 rad/m	
Optical potential of LHe	~ 10 neV	3E-9 rad/m	
Shift in neutron energy spectrum	$\Delta L \approx 0.01 mm$	8E-9 rad/m	Calculated
Small angle scattering		2E-8 rad/m	
Change in neutron paths due to refraction/reflection		3E-10 rad/m	
Polarimeter nonuniformity		1E-8 rad/m	
B amplification		< 4E-8 rad/m	
B gradient amplification		< 3E-8 rad/m	Measured
PA/target nonuniformity		< 6E-8 rad/m	
TOTAL estimated systematic effect		1.4E-7 rad/m	

Simulations used to investigate small angle scattering and B-field gradients

Small-angle scattering

- Upstream-downstream subtraction is incomplete
 - Energy loss for scattered neutrons + different paths in target region (up stream scatters travel farther at lower energy)
 - path length of scattered neutrons is different
 (up stream scatters spend longer time in target region)
 - different detector solid angles from target positions
 (fewer scattered neutron reach detector from up target)

Simulations

- Monte-Carlo neutron transport
 - Phase space of polarizing super mirror as input
 - allow reflections from waveguides, scattering from Al windows, air gaps
 - small angle scattering in liquid He target
 - calculate PC rotation

$$\varphi = \gamma_n \frac{B\ell}{v}$$

 study effect of target position, alignment, B-field gradients, changes in energy and path length

Systematic Effects

Diamagnetism of LHe	$\Delta B/B \approx 6E-8$	2E-9 rad/m	
Optical potential of LHe	~ 10 neV	3E-9 rad/m	
Shift in neutron energy spectrum	$\Delta L \approx 0.01 mm$	8E-9 rad/m	Calculated
Small angle scattering		2E-8 rad/m	
Change in neutron paths due to refraction/reflection		3E-10 rad/m	
Polarimeter nonuniformity		1E-8 rad/m	
B amplification		< 4E-8 rad/m	
B gradient amplification		< 3E-8 rad/m	Measured
PA/target nonuniformity		< 6E-8 rad/m	
TOTAL estimated systematic effect		1.4E-7 rad/m	

Results

• Artificially high magnetic field 10mG

 $(-0.9 \pm 2.2) \times 10^{-6}$ rad-meas $(-1.7 \pm 0.6) \times 10^{-6}$ rad-sim

implies <4x10⁻⁸ rad/m systematic

• Artificially high magnetic gradient +7mG to -7mG $(-2.0\pm3.1)\times10^{-6}$ rad-meas $(-0.7\pm2.7)\times10^{-6}$ rad-sim

implies <3x10⁻⁸ rad/m systematic

Results

- pi-coil ON runs measure $\varphi_{_{\rm PNC}}$
- pi-coil OFF runs should be zero if no systematics

NIST Guide Hall Expansion Project

NGC beam – larger area, higher flux, more divergent beam

~X20 increase in polarized slow neutron flux in spin rotation apparatus(!)

Spin rotation stat precision of <2E-7 rad/m in a 5 week cycle is possible slide courtesy M. Snow

Apparatus Improvements

- New 10cmX10cm supermirror polarizer/analyzer pair (on order)
 61 vanes with Fe/Si supermirror (m=2.5)
- Non-magnetic Supermirror (m=2) waveguides
- Enlarged target chambers, ion chamber
- Decreased heat load and He reliquidification to reduced down time
- Improved liquid He pumping

Conclusions

- In addition to helping constrain hadronic weak coupling constants, recent analysis demonstrates that the result also places the most stringent limit to date on new parity-odd long-range sub-eV interactions (WISPs) *Phys. Rev. Lett.* 110, 082003 (2013)
- Upcoming experiment on new NGC beam at NIST promises to improve precision to the 2x10⁻⁷ rad/m level.

Before real measurement we need to understand beam and apparatus behavior – systematic check of beam and apparatus behavior

Beam intensity distribution as $I(\lambda)$ / chopper – TOF, ionisation chamber

Polarization product (PA) as a $f(\lambda)$ /PSM, ASM, chopper – TOF

A. Micherdzinska

CUA, 03/02/2011

PA as a function of angle

A. Micherdzinska

CUA, 03/02/2011

Small Angle Scattering in liquid ⁴He

 cross section ~ Dynamic structure factor S(q, ω)

$$\frac{d^2\sigma}{dEd\Omega} = b^2 \frac{k}{k_o} S(q,\omega)$$

- for q<0.1 (1/Å), S(q, ω) found from hydrodynamic properties of liquid
- Measured σ(E) used to determine if scattering takes place

- Central peak from quasi-elastic scattering from diffusive motion of liquid
- side peaks from single phonon scattering

Figure 1: Experimental constraints on linear combinations of isoscalar and isovector DDH couplings (in units of 10^{-7}), taken from the 2001 work of [37], displaying bounds from four experiments where it is believed that theoretical analysis uncertainties are under reasonable control: pp, p α , ¹⁸F, and ¹⁹F. The small shaded triangle is consistent with all four experiments. The DDH best value point is also shown. Later we show that the data on $\vec{p} + p$ subsequently obtained at TRIUMF [13] and the analysis of Ref. [54] have a significant impact on this plot.

Haxton and Holstein, arXiv:1303.4132v2 [nucl-th] 21 Mar 2013

