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N-N Weak Interaction 

• HWI mediated by W± and Zo  but 

   short range (~0.01 fm) << size of nucleon (~1 fm) 
 

…yet responsible for parity violating effects in 

 N-N interactions, nuclear decay, atomic structure, 
anapole moments 

 

• Weak/strong ~10-6  

  Use parity violation to isolate Weak contribution 

 

 

strong ~1 fm 

weak ~0.01 fm 



Meson Exchange 

• DDH model – exchange of 3 lightest mesons, leads 
to six coupling constants  
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• Different experiments sensitive to different linear 
combinations  

 

Weak NN force 

~1/100 fm range 

~1 fm 

Strong NN force 
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Parity Violating Spin Rotation 

• Acquired phase shift is a function of index of refraction 

 

 

• Index of refraction depends on forward scattering amplitude, 
which includes PNC term (polarized neutrons, unpolarized target) 

 

 

 

• Two helicity states acquire different phases  rotation angle.   
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PNC for Transversely Polarized Neutrons 
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• Expected Size: 

 

 

• Experimental challenge  

– Reducing  

– effectively canceling what is left 

– controlling noise 

– controlling other systematics 
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Canceling PC 

• Vertical field of “Pi-coil” reverses rotation angle 

• Detector sensitive to φ
BKG

 − φ
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Canceling PC – Side-by-side experiments 

• φ
BKG

= dnφ
PC

- upφ
PC 

is insensitive to target location 
• Change target locations 
• Double subtraction isolates PNC and reduces effects of reactor 

fluctuations 
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    Cold Neutron Guide hall at NCNR n 

Main measurement – 3 reactor cycles January – May 2008, 
Systematic studies  – 1 reactor cycle June 2008.     

NG-6 Polychromatic beam 

58Ni  guide qc=2.1 mrad/A (m=1.2) 

Thermal neutrons  

Reactor 20 MW 
(fission neutrons) 

Moderation D2O 

Cold neutrons 

Moderation LH  

T=20K 

slide courtesy A. Micherdzinska  



supermirror 
analyzer 

ion chamber 

Spin Rotation Apparatus 

• 100microGauss in target region 

• float glass waveguides qc=1.2mrad/Å (m=0.68) 

• Be filter -> spectrum above 4Å limits under rotation by pi-coil 

supermirror 
polarizer 

room-temperature 
magnetic shields 

input coil 

input guides 

motion-control 
system 

output guide 

output 
coil 

cryogenic 
magnetic shield 

cryostat 

pi-coil 

liquid helium targets 

+y 
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Measures the horizontal component of neutron spin for a vertically-polarized 

beam 



Rotation Angle Asymmetry 

• Output coil rotates vertical spin by +90o or -90o  (1 Hz) 

• Vertical super-mirror analyzer analyzes component due 
to rotation 
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  Data sequence 

slide courtesy A. Micherdzinska  

n 

P-coil (−, 0, +) state is 
repeated five times to form a 
300-s target sequence.  
The liquid helium is then 
drained and filled in the 
complementary state in 300–
350 s, and the previous 
sequence is repeated to form 
a target cycle. 

A spin rotation angle is 
determined from each pair of 
output coil states (+, −). 
  
Reversing the π-coil current 
cancels any neutron spin 
rotations from stray fields 
outside the coil.  



 Polarizing Super Mirror 

Polarized 
beam  

B 

14 mrad 

4.5cmX5.5cm 

• spin-dependent scattering from 
magnetized mirrors 

 

• Alternating layers of magnetic surface 
(cobalt) and absorptive layer (titanium 
and gadolinium); 1mm separation; 

 Placed in 300 G permanent box.  

 

• Typical polarization: 98%;   
transmission: 25% 

unpolarized 
beam  

slide courtesy A. Micherdzinska  



Target Chamber 

pi-coil 

Separate Left and Right chambers upstream and downstream of pi-coil 
C.D. Bass NIM A 612 (2009) 69-82 



Segmented 3He ionization chamber 

• 3He and Ar gas mixture 
• Neutrons detected through  n+3He → 3H+1H 
• High voltage and grounded charge-collecting plates 

produce a current proportional to the neutron flux 
• 4 Detection Regions along beam axis - velocity 

separation   (1/v absorption) 

n 

S.D.Penn et al. [NIM A457 332-37 (2001)] 

charge collection plates are divided 
into 4 quadrants  (3" diam) separated 
L/R and U/D beam 



R L 

•Large noise from beam intensity fluctuations is 
suppressed 
 
•Width of LEFT-RIGHT difference of spin rotation 
angles is consistent with √N neutron counting 
statistics noise to ~10% accuracy  

Reactor Noise Suppression 



Systematic Effects 

Simulations used to investigate small angle 
scattering and B-field gradients 

Diamagnetism of LHe Δ -8 2E-9 rad/m 

Optical potential of LHe ~ 10 neV  3E-9 rad/m 

Shift in neutron energy spectrum Δ  8E-9 rad/m 

Small angle scattering 2E-8 rad/m 

Change in neutron paths due to 
refraction/reflection 

3E-10 rad/m 

Polarimeter nonuniformity 1E-8 rad/m 

B amplification < 4E-8 rad/m 

B gradient amplification  < 3E-8 rad/m 

PA/target nonuniformity < 6E-8 rad/m 

TOTAL estimated systematic effect 1.4E-7 rad/m 

Calculated 

Measured 



Small-angle scattering 

• Upstream-downstream subtraction is incomplete 
– Energy loss for scattered neutrons + different paths in target region 
 (up stream scatters travel farther at lower energy) 
– path length of scattered neutrons is different  
 (up stream scatters spend longer time in target region) 
– different detector solid angles from target positions  
 (fewer scattered neutron reach detector from up target) 

 
 

 
 

 

Target positions Wave guides detector 



Simulations 

• Monte-Carlo neutron transport 
– Phase space of polarizing super mirror as input 
– allow reflections from waveguides, scattering from Al windows, air gaps 
– small angle scattering in liquid He target 
– calculate PC rotation 
– study effect of target position, alignment, B-field gradients, changes in energy 

and path length 

v

B
n


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Systematic Effects 

Diamagnetism of LHe Δ -8 2E-9 rad/m 

Optical potential of LHe ~ 10 neV  3E-9 rad/m 

Shift in neutron energy spectrum Δ  8E-9 rad/m 

Small angle scattering 2E-8 rad/m 

Change in neutron paths due to 
refraction/reflection 

3E-10 rad/m 

Polarimeter nonuniformity 1E-8 rad/m 

B amplification < 4E-8 rad/m 

B gradient amplification  < 3E-8 rad/m 

PA/target nonuniformity < 6E-8 rad/m 

TOTAL estimated systematic effect 1.4E-7 rad/m 

Calculated 

Measured 



Results 

• Artificially high magnetic field 10mG 

 

 

   implies <4x10-8 rad/m systematic 

 

• Artificially high magnetic gradient +7mG to -7mG 

 

  

   implies <3x10-8 rad/m systematic 

    

  meas-rad 102.29.0 6   sim-rad 106.07.1 6

  meas-rad 101.30.2 6   sim-rad 107.27.0 6



Results 

• pi-coil ON runs measure  φ
PNC

    

• pi-coil OFF runs should be zero if no systematics 
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NGC beam – larger area, higher flux, more divergent beam 
 
~X20 increase in polarized slow neutron flux in spin rotation apparatus(!) 
 
Spin rotation stat precision of <2E-7 rad/m in a 5 week cycle is possible 

NIST Guide Hall Expansion Project 

slide courtesy M. Snow  



Apparatus Improvements 

• New 10cmX10cm supermirror 
polarizer/analyzer pair (on order) 

 61 vanes with Fe/Si supermirror (m=2.5) 

• Non-magnetic Supermirror (m=2) 
waveguides 

• Enlarged target chambers, ion chamber 

• Decreased heat load and He re-
liquidification to reduced down time 

• Improved liquid He pumping 

 



Conclusions 

• In addition to helping constrain hadronic weak coupling 
constants, recent analysis demonstrates that the result also 
places the most stringent limit to date on new parity-odd 
long-range sub-eV interactions (WISPs) Phys. Rev. Lett. 110, 
082003 (2013) 

• Upcoming experiment on new NGC beam at NIST promises to 
improve precision to the 2x10-7 rad/m level. 

 







 



 



  Before real measurement we need to understand beam  

and apparatus behavior – systematic check of beam and apparatus behavior 

Beam intensity distribution as I(l) / chopper – TOF, ionisation chamber 

n 

A. Micherdzinska                  CUA, 03/02/2011 



  Before real measurement we need to understand beam  

and apparatus behavior – systematic check of beam and apparatus behavior 

 

 

 

Beam intensity distribution as I(x,y) / image plate  

n 

A. Micherdzinska                  CUA, 03/02/2011 



  Before real measurement we need to understand beam  

and apparatus behavior – systematic check of beam and apparatus behavior 

 

 

  

Polarization product (PA) as a f(l)  /PSM, ASM, chopper – TOF  

n 

PA=(U-F)/(sU+F) 
 
U- Unflip; F- flip  
s – spin-flip efficiency 
(s=0.95 ± 0.05) 

A. Micherdzinska                  CUA, 03/02/2011 



 PA as a function of angle n 

CENTRAL  position 

For 5mm slit in the 

- 

0 

+ 

Input 
coil 

PA does not change with angle 

A. Micherdzinska                  CUA, 03/02/2011 



Small Angle Scattering in liquid 4He 

• cross section ~ Dynamic structure 
factor S(q,w) 

 

 

• for q<0.1 (1/Å), S(q,w) found from 
hydrodynamic properties of liquid 

• Measured (E) used to determine 
if scattering takes place 

• Central peak from quasi-elastic scattering 
from diffusive motion of liquid 

• side peaks from single phonon scattering 
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