⁵⁷Fe(n,α)⁵⁴Cr and 63 Cu(n,α)⁶⁰Co cross sections in the MeV region

Yu. M. Gledenov, M. V. Sedysheva, V. A. Stolupin Frank Laboratory of Neutron Physics, JINR, Dubna 141980, Russia

Guohui Zhang, Jinhua Han, Xiang Liu, Xiao Fan, Jinxiang Chen State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China

G. Khuukhenkhuu Nuclear Research Centre, National University of Mongolia, Ulaanbaatar, Mongolia

P. J. Szalanski University of Lodz, Institute of Physics, Lodz, Poland

Introduction
Measurements
Results

I. Introduction

Memorandum between the Joint Institute for Nuclear Research and Peking University

Protocol

of the collaboration on carrying out joint studies on the mechanism of interaction of neutrons with nuclei and on the properties of high excited nuclear states between the Joint Institute for Nuclear Research, Dubna, Russia and Peking University, Beijing, China.

As of 15.03.2005

The collaboration between the two institutions has been fruitful and successful, and the period of validity of the Protocol is extended once for four years until December 31, 2012. At present, both sides would like to continue the collaboration and to extend the period of validity of the above Protocol for another four years until December 31, 2016.

JINR-PKU Protocol

Director of the Joint Institute for Nuclear Research Prof. V.A. Matveey Molacter Occ. 20, 2012

President of Peking University Prof. ZHOU Qifeng Q. F. Share Nov. 22, 2012

Combined with theoretical calculations, systematic results are obtained.

- No measurement data exist
- Data exist in all evaluated data libraries with significant discrepancies
- □ ⁵⁷Fe abundance in natural iron: 2.119%
- Cross section is small, and in MeV region increase rapidly
- ⁵⁴Cr stable, so activation method unavailable
- □ ⁵⁴Cr separate levels:
 - 0, 0+; 834.855, 2+; 1823.93, 4+ ; 2619.68 2+;...keV

- □ 19 measurement data, in 40⁺ years
- In MeV region mainly two measurements, with discrepancy
- ⁶³Cu abundance in natural copper: 63.17%
- Cross section is small, and in MeV region increase rapidly
- ⁶⁰Co is radioactive, activation method available
- ⁶⁰Co levels are dense: 0, 5⁺; 58.59, 2⁺; 277.2, 4⁺; 288.4,3⁺; 435.7, 5⁺... keV

	⁵⁷ Fe(n,α)	⁶³ Cu(n,α)
Exp. data	No data	19 measurements
Activation method	unavailable	available
Natural abundance	2.119%	63.17%
obtained results	$(n,\alpha)(n,\alpha_0)(n,\alpha_1)$	only (n,α)

II. Measurements.

4.5 MV Van de Graaff Accelerator Institute of Heavy Ion Physics in Peking University

Neutron source

Twin GIC back to back: ~4π

- □ 5 back-to-back sample positions
- □Working gas: Kr+2.82%CO₂, 1 atm

□distances:

cathode-grid 61.0 mm grid-anode 15.0 mm anode-shield 9.0 mm

□ Va=+750, Vg=0, Vc=-1500 V

Samples

⁶³Cu

⁵⁷Fe

Sample positions

	Sample position	Forward direction	Backward direction	Utility
	Ι	⁵⁷ Fe	⁵⁷ Fe	②Foreground measurement
a Ta Cu Cu Cu a		sample #2	sample #1	
	II	⁶³ Cu	⁶³ Cu	③Foreground measurement
		sample #2	sample #1	
	III	Ta sheet	Ta sheet	④Background measurement
forward section backward section	IV	²³⁸ U	Ta sheet	Solution Solution Solution
57 Fe: Event ~10h, background ~6h,				
flux ~4-6h. 20h for each energy point ⁶³ Cu: Event 1020h	\mathbf{V}	compound α source	compound α source	adjustment and energy calibration

Sample data

	⁵⁷ Fe Samples	⁶³ Cu Samples	²³⁸ U Sample
Sample material	Enriched ⁵⁷ Fe	Enriched ⁶³ Cu	²³⁸ U ₃ O ₈
Isotopic abundance	⁵⁷ Fe 95.9%	⁶³ Cu 99.8%	²³⁸ U 99.999%
Sample thickness	582.5ª and 599.1 ^b μg/cm ²	770ª and 781 ^b μg/cm²	493.6 μg/cm ² (²³⁸ U only)
Sample diameter	45.0 ^a and 41.0 ^b mm	48.0 ^a and 43.5 ^b mm	45.0 mm
Backing	Ta sheet	Ta sheet	Ta sheet

^a forward sample, ^b backward sample Sample preparation method: press Russian material, China CIAE preparation

Block diagrams of the electronics.

Flux calibration

²³⁸U fission & BF₃ long counter ENDF/B-VII

²³⁸U fission cross section as a function of the neutron energy. Relative efficiency of the BF₃ long counter.

- Energy calibration
- 0/180°, 90° line determination
- Background subtraction (E loss correction)
- Spectrum projection
- Counts determination
- Flux determination
- Theoretical and Monte Carlo calculations
- Self absorption and threshold loss correction (fission & alpha counts)
- Correction for alpha loss from higher excited states (R)

III. Results

Spectrum of alpha sources.

Flux determination

 238 U Fission spectrum at E_n=6.5 MeV.

⁵⁷Fe(n,α)⁵⁴Cr

foreground

background

Cathode-anode two dimensional spectrum for the forward direction at $E_n = 6.5$ MeV.

⁵⁷Fe(n,α)⁵⁴Cr

Two dimensional spectrum after background subtraction for the forward direction at $E_n = 6.5$ MeV.

Anode spectrum for the forward direction at $E_n = 6.5$ MeV.

Present results compared with <u>TALYS-1.4</u> calculations.

⁵⁷Fe(n,α)⁵⁴Cr

Present results compared with existing evaluations. 25

⁶³Cu(n,α)⁶⁰Co

Present results compared with other measurements and evaluations.

⁶³Cu(n,α)⁶⁰Co

Present results compared with other measurements and evaluations.

Summary

- □ ⁵⁷Fe/⁶³Cu samples are prepared
- □ ⁵⁷Fe(n, α), (n, α_0), (n, α_1), (n, α_2) cross sections and ⁶³Cu(n, α) cross sections are measured @4.5MV VDG PKU
- \Box at $E_n = 5.0, 5.5, 6.0, 6.5 MeV$
- Data are compared with existing evaluations and TALYS-1.4 calculations
- Results are preliminary, further check, and measurements are needed

Thank you!