Neutron Derived Properties of the Martian Soil

V. N. Shvetsov¹, A.R. Krylov¹, I.G. Mitrofanov², G.N.Timoshenko¹, A.O. Zontikov¹
1) Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia
2) Russian Space Research Institute, Profsoyuznaya 84/32, Moscow, Russia

22°21'34.66" S 41°58'48.71" W elev 27

An Examples of Present Space Missions

- Mars Reconnaissance Orbiter
- Mars Odyssey 2001

International Space Station

Lunar Reconnaissance Orbiter

SAV DLR / FU Berlin (G Neukum) Imape NASA/ USGS

41°58'48.71" W elev 27

13.20 mi

The Origin of Gamma and Neutron Radiation at Space

Solar Cosmic Rays
 (SCR);
 Galactic Cosmic Rays
 (GCR);

LR / FU Berlin (G Neukum) mage NASA/ USGS

Goo

SCR & GCR Interaction with Planets

Mars Odyssey 2001

North pole

60°

30°

0°

-30°

60°

Martian topografy

South pole

HEND Creation

Participants:

Rosaviakosmos RSRI RSRI SDB SNIIP JINR VIMS e.a.

University of Arizona NASA JPL LMA NASA KSC

December 1999

April 7, 2001

September 2000

February 19, 2001

22°21'34.66" 5 41°58'48.71" W elev 27

...

Russian High Energy Neutron Detector (HEND)

Total weight: 3.695 kg Power supply: 5.7 watt

SD, MD, LD – ³He proportional counters en veloped with PE of different thickness

SC – stilbene scintillator with CsI anticoincidence counter

Pulse height analysis

5 sensors = 6 signals: 1-4 – neutrons 0.001 – 10 MeV γ – 50-2000 keV GCR and solar protons Space port "Cape Canaveral" (Florida, USA),

04.07.2001

"2001 Mars Odyssey" mission

Purpose of expedition: exploration of Martian surface (research of chemical composition of the surface and search for water);

Scientific equipment: HPG gamma-ray spectrometer (GRS), low energy neutron spectrometer (NS); highenergy neutrons detector (HEND); thermal emission imaging system (THEMIS); radiation environment measuring system (MARIE);

Total mass of a scientific equipment: 44.5 kg

Arrival to Mars: 10.23.2001

Building the Map

On the surface of planet making a mesh with selected size of pixels. In each pixel independently accumulating counts and exposure time. Selecting a time interval, detector and set of channels to create map.

Main parameters of orbit: Altitude – 400 km; Orbital period – 2 hours; Orbit inclination – 93.1⁰

^{22°21&#}x27;34.66" S 41°58'48.71" W elev 27

Water Ice on Mars – Data from Three Detectors

CAMBRIDGE PLANETARY SCIENCE

mposition

The Marte s on Pathfinder

Composition, Minera

ELEMENTAL COMPOSITION:

Table 3.1. Foley et al. (2003b) X-ray mode results ($\pm 1\sigma$)

Soils	Na ₂ O*	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	SO ₃	Cl	K ₂ O	CaO	TiO ₂	Cr ₂ O ₃	MnO	Fe ₂ O ₃
A-2 Deploy	3.2 ± 0.7	8.7 ± 2.0	10.4 ± 0.8	40.9 ± 0.8	0.9 ± 0.2	6.0 ± 1.2	0.7 ± 0.2	0.50 ± 0.04	6.1 ± 0.4	0.7 ± 0.2	0.3 ± 0.1	0.5 ± 0.1	21.2 ± 0.9
A-4 Next to Yogi	3.2 ± 0.7	8.0 ± 1.9	10.6 ± 0.8	41.0 ± 0.9	1.2 ± 0.2	6.9 ± 1.4	0.8 ± 0.2	0.50 ± 0.07	5.6 ± 0.4	1.0 ± 0.3	0.4 ± 0.1	0.4 ± 0.1	20.4 ± 0.8
A-5 Dark Next to Yogi	3.2 ± 0.6	7.1 ± 1.7	10.4 ± 0.8	40.7 ± 0.9	0.6 ± 0.1	5.7 ± 1.1	0.8 ± 0.2	0.50 ± 0.05	6.1 ± 0.4	0.6 ± 0.1	0.5 ± 0.1	0.20 ± 0.06	23.7 ± 1.0
A-9 Disturbed Soil by Scooby	2.6 ± 2.4	6.4 ± 1.6	10.2 ± 0.9	41.7 ± 0.9	0.8 ± 0.2	6.6 ± 1.4	1.2 ± 0.3	0.70 ± 0.09	6.4 ± 0.5	0.8 ± 0.2	0.2 ± 0.1	0.1 ± 0.1	22.2 ± 1.0
A-10 Lamb	1.8 ± 0.7	7.5 ± 1.7	9.8 ± 0.7	41.3 ± 0.9	0.6 ± 0.1	6.4 ± 1.3	0.8 ± 0.2	0.40 ± 0.04	6.0 ± 0.4	0.8 ± 0.2	0.3 ± 0.1	0.4 ± 0.1	24.0 ± 1.0
A-15 Mermaid	2.7 ± 0.8	6.7 ± 1.6	9.9 ± 0.8	43.2 ± 1.0	0.6 ± 0.1	5.2 ± 1.1	0.8 ± 0.2	0.70 ± 0.07	5.5 ± 0.4	0.8 ± 0.2	0.3 ± 0.1	0.3 ± 0.1	23.2 ± 1.0
Indurated soil													
A-8 Scooby Doo	3.1 ± 0.8	6.4 ± 1.5	10.5 ± 0.8	45.0 ± 1.0	0.5 ± 0.1	5.5 ± 1.1	0.9 ± 0.2	0.80 ± 0.06	7.0 ± 0.5	0.7 ± 0.2	0.1 ± 0.1	0.3 ± 0.1	19.1 ± 0.8
Rocks	Na ₂ O*	MgO	Al ₂ O ₃	SiO ₂	P2O5	SO ₃	CI	K ₂ O	CaO	TiO ₂	Cr ₂ O ₃	MnO	FeO
A-3 Barnacle	3.2 ± 0.5	2.1 ± 0.5	12.8 ± 0.9	54.1 ± 1.1	0.7 ± 0.1	2.0 ± 0.4	0.5 ± 0.1	1.1 ± 0.07	5.7 ± 0.4	0.6 ± 0.1	0.10 ± 0.04	0.3 ± 0.1	16.7 ± 0.7
A-7 Yogi	4.9 ± 0.8	5.2 ± 1.2	11.2 ± 0.9	47.4 ± 1.1	0.5 ± 0.1	4.4 ± 0.9	0.8 ± 0.2	0.70 ± 0.06	6.6 ± 0.5	0.7 ± 0.2	0.10 ± 0.1	0.4 ± 0.1	17.1 ± 0.7
A-16 Wedge	4.9 ± 0.9	4.1 ± 1.0	11.5 ± 0.8	48.0 ± 1.1	0.6 ± 0.1	3.0 ± 0.6	0.6 ± 0.1	0.80 ± 0.07	6.9 ± 0.5	0.7 ± 0.2	0.00 ± 0.04	0.3 ± 0.1	18.6 ± 0.8
A-17 Shark	3.6 ± 0.8	3.9 ± 1.0	10.7 ± 0.8	53.9 ± 1.2	0.5 ± 0.1	1.7 ± 0.4	0.5 ± 0.1	0.80 ± 0.09	7.7 ± 0.6	0.5 ± 0.2	0.10 ± 0.1	0.4 ± 0.1	15.8 ± 0.7
A-18 Half Dome	4.0 ± 0.7	3.4 ± 0.8	12.3 ± 0.9	50.0 ± 1.1	0.6 ± 0.1	3.0 ± 0.6	0.7 ± 0.2	1.0 ± 0.08	6.0 ± 0.5	0.7 ± 0.2	0.10 ± 0.1	0.4 ± 0.1	17.9 ± 0.7

Key: All X-ray Na₂O* values are calculated from α-proton mode Na₂O/SiO₂ values except for A-9, disturbed soil by Scooby Doo, which is derived from X-ray. Errors are the statistical and laboratory combined error, at the 1σ level. Sulfur is assumed to have +6 oxidation state because of its high abundance, and because of the Viking soil analyses which support this oxidation state (Toulmin et al., 1977). Fe is assumed to have +3 oxidation state in the soils and +2 oxidation state in the rocks based on IMP (Imager for Mars Pathfinder) red/blue ratios which indicate more oxidized iron in the soils than the rocks (McSween et al., 1999).

- Pontecorvo, B. Neutron Well Logging: New Geological Method Based on Nuclear Physics. – Oil and Gas Journal, 1941–42, vol. 40, no. 18.
- E. Amaldi and E. Fermi On the Absorption and the Diffusion of Slow Neutrons Physical Review (1936), v. 50, p.p. 899-928
- Флеров Г.Н., Алексеев Ф.А. Использование радиоактивных излучений при разведке и разработке нефтяных месторождений – Доклад на сессии АН СССР по мирному использованию атомной энергии 1-5 июля 1955 г., М.: Издательство АН СССР, 1955.
- Флеров Г.Н., Алексеев Ф.А., Ерозолимский Б.Г. Перспективы использования радиоактивных излучений в геологии при поиске и разведке полезных ископаемых – Труды Всесоюзной научно-технической конференции по применению радиоактивных изотопов и излучений в народном хозяйстве и науке. М.: Гостоптехиздат, 1958, с.17-28.
- Ерозолимский Б.Г. и др. Новые методы исследования буровых скважин, основанные на использовании импульсных нейтронных источников – Нефтяное хозяйство, 1958, №11, с.58-64.
- Flerov, G. N. Application of nuclear physics methods for exploration and development of the oil and gas fields, Radioisotopes in the Physical Sciences and Industry, Press. Conf. Sept., Vol I, pp. 117-122, Vienna, IAEA, 1960

Neutron Moderation in Soil

Energy, MeV

•

Some History

	l I
	Final Report
	NEUTRON DIE-AWAY EXPERIMENT FOR
RESEARCH DEPARTMENT	LUNAR AND FLANETART SURFACE ANALTSIS
	July 26, 1966 through March 26, 1967
	Prepared by
	W. R. Mills, Jr.
	and
	W. W. Givens
	of
GPO PRICE 3	3. <u>Mobil Oil Corporation</u> Field Research Laboratory 3600 Duncanville Road Dallas, Texas 75211
CFSTI PRICE(S) S	
Har suppy (HC) 43.00	for
Microfiche (MF)65	Dr. Martin J. Swetnik Code SL
MOBIL OIL CORPORATION	National Aeronautics and Space Administration Washington, D.C. 20546
$ \frac{N 67 - 27424}{(x c c s s u o n N M R R)} - \frac{(T M R U)}{(x c s s u)} $ $ \frac{130}{(x c s s u)} - \frac{1}{(c s s u)} = 0 $	ESAV DLR / FU Berlin (G Neukum) Image NASAr USGS
INASA ER OS TILS OF AD HUMMERT (CATEGORY)	and the second
	22°21'34.66" S - 41°58'48.71" W elev - 27

Experiment DAN onboard Curiosity Rover

DAN PNG and DE Allocation

22°21'34.66" 5 41°58'48.71" W elev 27

Neutrons Die-Away Spectra from DAN

SAV DLR / FU Berlin (G Neukum) Imape NASA/ USGS

G00

MCNP Simulations

CETN calculated, dry soil, τ =52 s

600

MCNP Simulations

CETN calculated, 15% water soil, τ =30 s

MCNP Simulations

º21'34.66" S 41º58'48.71" W elev 27

Epithermal Neutrons Inverse Lifetime Variations

Proving Ground for Martian Soil Simulation

22º21'34.66" S 41º58'48.71" W elev 27

Conclusion

- Neutron logging with pulsed source was successfully implemented on the Martian rover spacecraft;
- The sensitivity to the water content on the level of few percents demonstrated;
 More detailed MCNP simulations and physical modeling of the Martian soil is underway;

SAV DER / FU Berlin (G Neukum) Imape NASAK USGS

100

