Department of Neutron Activation Analysis Division of Nuclear Physics Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research

Biotechnology of metal removal from industrial wastewater: zinc case study

Inga Zinicovscaia

E-mail: zinikovskaia@mail.ru

I. Zinicovscaia^{1,3*}, M.V. Frontasyeva, S.S. Pavlov, S.F. Gundorina ¹Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia

L. Cepoi, T. Chiriac, L. Rudi

²Institute of Microbiology and Biotechnology of the Academy of Science of Moldova, 1, Academiei Str., 2028 Chisinau, R. Moldova

Gh. Duca, T. Mitina

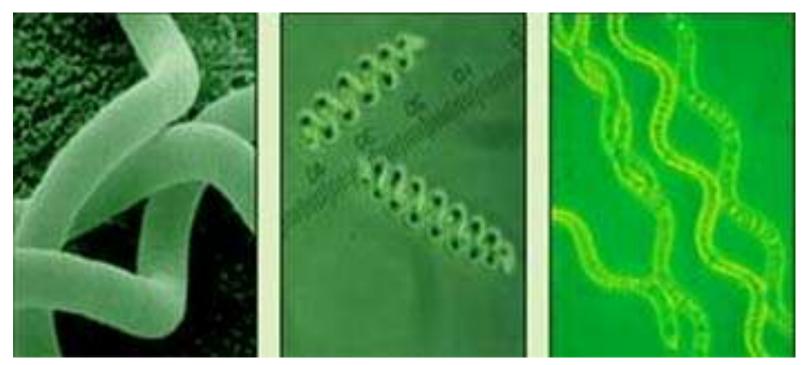
³The Institute of Chemistry of the Academy of Sciences of Moldova, 3, Academiei Str., 2028 Chisinau, R. Moldova

Zinc in organism

1A	1																8A
Η	2A											3A	4A	5A	6A	7A	He
Li	Be							8B				В	С	N	0	F	Ne
Na	Mg	3B	4B	5B	6B	7B	/8	9	10	1 B	2B	Al	Si	Р	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Ро	At	Rn

- > Catalytic
- > Structural
- > Regulatory

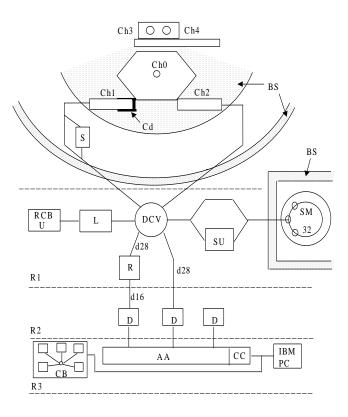
Zinc is a critical element for human health, because even its small deficiency can have disastrous consequences


Application of zinc

\succ low cost

- prompt availability
- relatively high specific surface area
- good binding affinity

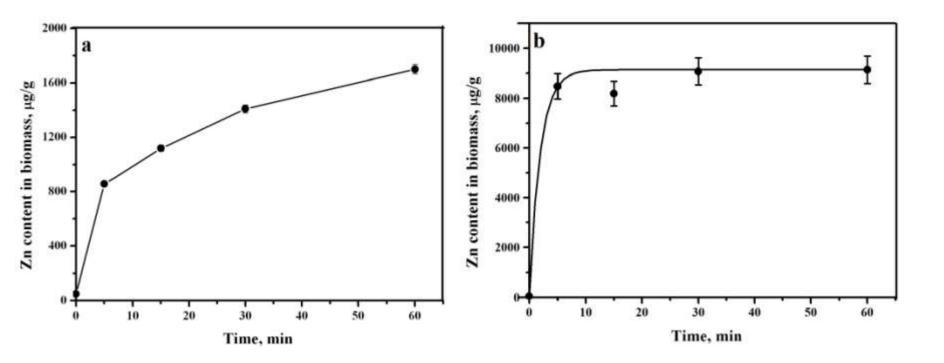
Object of study


Spirulina platensis

Spirulina is a filamentous plankton cyanobacteria (gramnegative), or a multicellular helical filamentous alga. To carry out the experiment, algological pure culture of *Spirulina platensis CNM-CB-02* strain from the National Collection of Nonpathogenic microorganisms (Institute of Microbiology and Biotechnology, Academy of Sciences of Moldova) was used.

C $_{ZnSO4\cdot7H2O}$: 100mg/L and 1000mg/L Experiment time = 1 hour

Samples were obtained in 5, 15, 30 and 60 minutes


IBR-2 and Radioanalytical complex REGATA

Zinc content in the samples was determined by neutron activation analysis at the reactor IBR-2 by the energy 438.6 keV of isotope ^{69m}Zn

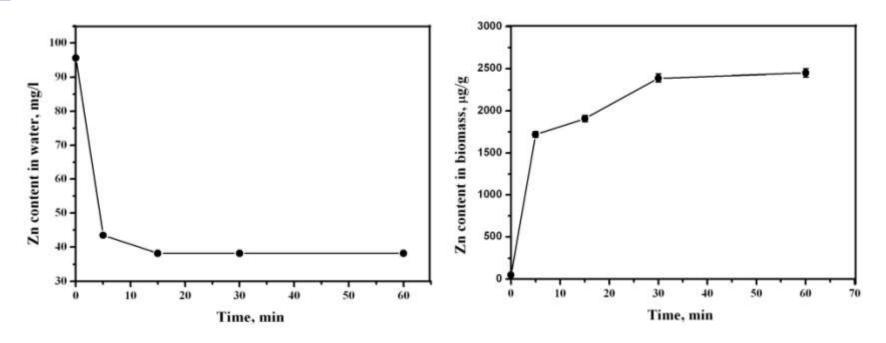
irradiation time 4 days; - neutron flux density $\approx 1.6 \ 10^{16} \ neutron/(cm^2 \cdot s)$

Fig. 1. Zinc content in the *S. platensis* biomass versus to the time of exposure to zinc sulfate: (a) 100 mg/L; (b) 1000 mg/L

The largest manufacturer of modern agricultural machinery in Republic of Moldova

Experimental scheme

Notation of	Notation of Form/ amount		Further additions	Contact time					
the variants	of spirulina	residual water,							
	biomass, mg	ml							
I st type of experiment									
Ι	Filtered/ 50	100	_	30 min					
II	Filtered/ 50	100	1.68 g NaHCO ₃	30 min					
III	Filtered/ 50	100	SP-1 in macro environment	30 min					
			required amount for 100 ml						
			medium						
II nd type of experiment									
IV	Culture on the	100	—	3 days					
	third day in 100								
	ml medium / 50								
	mg								


Results

Zn, Fe, K, As and W content in spirulina biomass after its interaction with wastewater

Experimental variant	Content of elements in biomass, mg/ kg								
	Zn	Fe	К	As	W				
Ι	2060±90	91300±5900	5410±390	7.6±0.5	8.2 ± 2.5	-			
II	74900±1400	74300±5200	6540±560	4.2±0.3	3.6±1.1	-			
III	82500±1500	90400±4500	5900±400	4.7±0.3	4.0±1.2	-			
IV	52000±9800	51700±3900	9890±990	2.5±0.2	3.5±1.1	+			
С	50 ± 1	1360 ± 30	18025±900	0	0				

Notation of the variants	Form/ amount of spirulina biomass, mg	Amount of residual water, ml	Further additions	Contact time					
III ^d type of experiment									
V	Filtered/75	100	_	5 min					
VI	Filtered/75	100	–	15 min					
VII	Filtered/75	100	_	30 min					
VIII	Filtered/75	100	_	60 min					

Results

Fig. 2. Zinc content in wastewater versus the contact time with the *S. platensis* biomass

Fig. 3. Zinc content in the *S. plantensis* biomass versus the contact time with the wastewater

Results

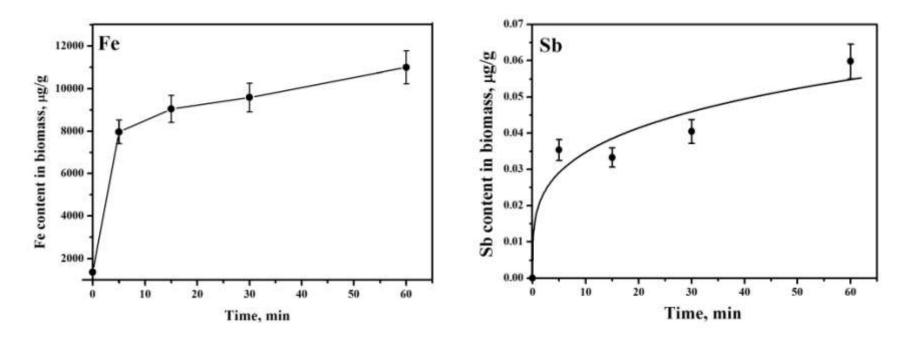


Fig. 4. Fe and Sb distribution in the Spirulina platensis biomass

- Spirulina platesis native biomass is an efficient biosorbent for the removal of zinc from wastewater
- Zinc can be efficiently removed from wastewater when its concentration is less than 100 mg/L
- In addition to zinc, spirulina native biomass accumulates other metals present in wastewater, such as iron, antimony and tungsten
- It is recommended to use microbial biomass in the process of removal of metals from wastewater at low metal concentrations, than conventional techniques are not profitable

Thank you for attention!