Experimental study on reactions in URANIUM AND TRANSURANIUM ISOTOPES IN THE NEUTRON FIELD OF THE QUINTA TARGET

L.Zavorka⁺, J.Adam, W.Furman, J.Khushvaktov, A.Solnyshkin, V.Tsoupko - Sitnikov, J.Vrzalova⁺, S.Tyutyunnikov, M.Kadykov *Joint Institute for Nuclear Research, Dubna, Russia ⁺Czech Technical University, Prague, Czech Republic*

V.Chilap

CPTP «Atomenergomash», Moscow, Russia

P.Caloun, M.Suchopar⁺ *Nuclear Physics Institute Rez, Czech Republic* & colleagues of the "E&T-RAW" collaboration

«Energy and Transmutation - RAW»

J.Adam, A.Baldin, A.Berlev, W.Furman, N.Gundorin, B.Gus'kov, J.Khushvaktov, M.Kadykov, Yu.Kopatch, E.Kostyuhov, I.Kudashkin, A.Makan'kin, I.Mar'in, A.Polansky, V.Pronskikh, A.Rogov, V.Schegolev, A.Solnyshkin, V.Tsupko-Sitnikov, S.Tyutyunnikov, A.Vishnevsky, N.Vladimirova, A.Wojciechowski, L.Zavorka Joint Institute for Nuclear Research. Dubna. Russia V.Chilap, A.Chinenov, B.Dubinkin, B.Fonarev, M.Galanin, V.Kolesnikov, S.Solodchenkova CPTP «Atomenergomash», Moscow, Russia M.Artyushenko, V.Sotnikov, V.Voronko KIPT. Kharkov. Ukraine A.Khilmanovich, B.Marcynkevich Stepanov IP, Minsk, Belarus K. Husak, S.Korneev, A.Potapenko, A.Safronova, I.Zhuk JIENR Sosny near Minsk, Belarus M.Suchopar, O.Svoboda, J.Vrzalova, V.Wagner INP, Rez near Praha, Czech Republic Ch. Stoyanov, O.Yordanov, P.Zhivkov Institute of Nuclear Research and Nuclear Energy, Sofia, Bulgaria M.Shuta, E.Strugalska-Gola, S.Kilim, M.Bielevicz National Centre for Nuclear Research, Otwock-Swerk, Poland S.Kislitsin, T.Kvochkina, S. Zhdanov Institute of Nuclear Physics NNC RK, Almaty, Kazakhstan. M. Manolopoulou Aristotle Uni-Thessaloniki. Thessaloniki. Greece W.Westmeier Gesellschaft for Kernspektrometrie, Germany **R.S.Hashemi-Nezhad** School of Physics, University of Sydney, Australia

Objectives of the presentation

- Results of the experiment in Dec 2012
- Experimental samples: ^{127,129}I, ^{nat}Th, ^{nat,233,235}U, ²³⁷Np, ^{238,239}Pu, ²⁴¹Am

•
$$E_d = 1, 2, 4 \text{ GeV/A}$$

Transmutation reactions

• Long-lived FP and TRU into short-lived or stable isotopes

- spallation reaction
- (n,f) fission
- (n,xn) nonelastic reaction
- (n,γ) radiative capture

Transmutation reactions

• Long-lived FP and TRU into short-lived or stable isotopes

- spallation reaction
- (n,f) fission
- (n,xn) nonelastic reaction
- (n, γ) radiative capture ! neutron consuming, \rightarrow higher TRU

m_⊔ ≈ 512 кг

46th Nuclotron run

December 2012

Experimental methods

- Activation measurement technique
- Gamma spectroscopy with the use of HPGe detectors Canberra and ORTEC (20%, resp. 30% relative efficiency)
 Calibrated with standards made in 2011; FEP improved by MCNPX simulation

Isotope identification

- Half-life (≥ 10 measurements)
- Energy and intensity of gamma line
- Reaction rates calculated from measured activity
- Included corrections:

decay during irradiation, cooling and measurement, dead time, detector efficiency, nonlinearity, beam instability, gamma line intensity, self-absorption, gamma coincidence summing, nonpoint-like source

²³⁵U Results

R-factor:

[deuteron⁻¹ atom⁻¹]

Cumulative yields: ENDF/B-VII.1 500 keV

⁸⁷Kr

⁸⁸Kr

⁹¹Sr

91m**Y**

⁹²Sr

⁹⁵Zr

⁹⁷Nb

⁹⁷7r

¹⁰³Ru

¹⁰⁵Rh

¹⁰⁵Ru

¹²⁸Sn

235,238U results

²³⁵U fission in ^{nat}U:

	r = 20		r = 0
	EXP	CALC	CALC
1 GeV/A	0.13(4)	0.14	0.03
4 GeV/A	0.15(5)	-	0.04
AVG:	0.13(4)	0.14	0.04

MCNPX: Very good agreement

⁹¹Sr

91m**y**

⁹²Sr

⁹⁷Nb

⁹⁷7r

¹⁰³Ru

¹⁰⁵Rh

¹⁰⁵Ru

131

132

133

135

¹⁴²La

¹⁴³Ce

²³³U Results

FISSION / 1 GeV in ²³³ U			
	R·1E27		
1 GeV/A	125(19)		
2 GeV/A	105(16)		
4 GeV/A	112(22)		

⁹²Sr
 ⁹⁷Nb
 ⁹⁷Zr
 ¹³³I
 ¹³⁵Xe
 ¹³⁸Cs
 ¹⁴²La

²³⁷Np Results

⁹²Sr ⁹⁷Nb ⁹⁷Zr ¹³²J ¹³³J ¹³⁵J ¹³⁸Cs ¹⁴²La

²³⁹Pu Results

¹⁴¹La ¹⁴²La ¹⁴³Ce

⁸⁷Kr

⁸⁸Kr

⁸⁸Rb

⁹¹Sr

²³⁸Pu Results

⁸⁸Kr
⁹¹Sr
⁹²Sr
⁹⁷Zr
⁹⁷Nb
¹⁰⁵Rh
¹⁰⁵Ru
¹²⁹Sb
¹³¹I
¹³²I
¹³³I
¹³⁵I
¹⁴²La
¹⁴³Ce

Experiment vs. calculation

Thank you for your attention.