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If Baryon Asymmetry of the Universe (multiverse?) is due to CP violation 

6 x 10^-28 e-cm <dn <2 x 10^-25 e-cm 

BUT 

Standard Model (without theta problem) 
               10^-33 e-cm < dn < 10^-31 e-cm 

Theta problem: edm is very large prop to unkown parameter ‘theta’ which 
must be set to ~10^(-10). 
To avoid this Axions were invented => small industry of Axion searches 

Edm searches are the best way to look for 
physics beyound the standard model 
because the expected standard model 
background is so small 









Polarized He3 as: 
 
-Polarizer (partial..beam is polarized 
-Magnetometer 
-Analyzer 
-Detector  
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Discovered by Cummins…molecular beam edm experiment 

Important Systematic error 
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Geometric Phase Picture 

+v 
-v 

22

2

ro

E

abv













c

E
b

ar

r

v

xy

r







2

2

2

abR

abv

o






or

ro











Different approaches 

Classical Bloch 
equations 

Quantum Density 
matrix or 
Torrey equation 

Quantum 
Schroedinger 
equation 
(Steyerl) 

Direct solution Position-velocity 
correlation function 

Pendlebury et al 2004 

Single velocity 
Cylinder 
Specular wall reflections 
No gas collisions 



Classical Approach 



Classical Approach 
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Three  approaches…all are equivalent 

Torrey equation…solve to second order 

Equation of motion of density matrix to second order 

Leads to relaxation matrix in terms of correlation 
functions…..is same as Torrey equation results when 
diffusion theory determines correlation functions 



This is exact for any time dependence  W(t) 

Solve by treating rhs as a perturbation 

Steyerl, Golub Solution of Schroedinger 
equation 



Geometric phase effect 

[1] S. K. Lamoreaux and R. Golub. Phys. Rev. A, 71:032104, 2005. 

Considering only non-zero correlations we find 
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R is a position-velocity Correlation Function! 
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A  Family of Correlation functions 
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Correlation of arbitrary space-
dependent fields 

Conditional probability, transition 
probability 
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Introduced by Petukhov and independently by Clayton 
using P given by diffusion theory 



Barabanov found an analytic expression for the 
velocity auto-correlation function for motion in a 
cylindrical cell 



Analytic approach 
to correlatioin fns 









3He



3He



Phase shift in terms of position 
autocorrelation function 

Therefore the position velocity correlation function can be written in 
terms of the position autocorrelation function. 

Which can be written in terms of the Fourier transform for an arbitrary B field 

xB
yB



The Correlation Function in 1-D 
•         is related to position conditional density 

[1] C. Swank and R. Golub. arXiv:1012.4006  2010. 
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http://arxiv.org/abs/1012.4006


First define the scattering probability per unit time. 

 

Second, define how the probability is transported before or between 

scattering 

Now define the distribution after a scatter. 



The probability density of scattering at position r and time t is 

given as: (from origin) 

The probability of arriving at position r at a time t  

where 

Probablity of scattering Probability of not scattering 



2D & 3D Conditional densities. 

Substituting 

Taking the Laplace transform the equations can be linearized. Defined as, 

gives 



2D & 3D Conditional densities. 
The solved equations in Laplace space 

Taking the transform of g 

Therefore 



2D & 3D Conditional densities. 

This 2D spectrum can be converted back to space and time by an inverse 
Fourier transform 

The 3D spectrum can be found in the same way as the 2D, however it does 
not have an inverse Fourier transform 

3D 



Restricted random walk 



Solve with infinite domain P(r,t) and 
continued periodic function in 
unphysical cells 
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The geometric frequency shift derived from the 
restricted random walk 

Define the spectrum.  

Written in terms of the 3D conditional probability.  

One can take advantage of the periodicity of the variables via Fourier series, 
Simplifying the integration. 

( , | ,0)op x x







Velocity Weighted Distributions 



False EDM due to frequency shift 



Measuring the correlation function 
The relaxation can be derived from the same density matrix as the phase shift. 
This time ignoring the E field. Keeping only non-zero correlations. 

Longitudinal Relaxation 

Transverse Relaxation 

In a linear gradient the position autocorrelation function spectrum is 
proportional to the relaxation rate, therefore we can measure the spectrums 
used to predict the geometric phase. 



Measuring the correlation function 

Spectrums proposed to model Relaxation/Phase shift. 

Spectrums used to measure Relaxation/Phase in the High Frequency and Diffusive 
Models. 



Measuring the correlation function 



Results 

High Frequency 

3D Theory 


