

Performance of the ultracold neutron source at the Paul Scherrer Institute

Bernhard Lauss Paul Scherrer Institute

on behalf of the PSI UCN Team

ISINN22-2014

- Introduction to PSI
- Introduction to the ultracold neutron source,
 - construction
 - operation
- Performance with ultracold neutrons

- Characterization measurements of individual sections of the UCN source

PAUL SCHERRER INSTITUT

The way to PSI - 2600 km

Paul Scherrer Institute

SwissFEL: γ

600 MeV p cyclotron p beam current: 2.2 mA 1.3 MW: μ , π

SINQ: n

SLS: γ

Proton cyclotron for medical application: p

UCN: n

Agre

Neutron production via proton spallation on lead

Sketch of the PSI UCN source

The lead spallation target

Gold foil activation measurement

calibrated γ -measurement at radio-analytic laboratory of PSI

Ultra Cold Neutron Source

Monte Carlo Simulation and measurement agree at beam height better than 20% MCNPX calculations

ightarrow ~factor 2 lower cold neutron flux in comparison to early design .

PAUL SCHERRER INSTITU

- tested operation of pulses from 7ms, 50ms to 8s
- beam currents from 100 to 2400 μA
- continuous mode operation possible (split beam) with beam current <20 μA

tested operation of pulses from 7ms, 50ms to 8s	
and beam currents from 100 to 2400 μ A	

continuous mode operation possible with beam current <20 μA

UCN Tank

Bernhard Lauss

ISINN22-2014

PAUL SCHERRER INSTITUT

UCN storage volume

DLC coating

Bernhard Lauss

Installation of the storage volume unit and the deuterium unit

fall 2010

Neutron guides pass the biological shield and guide the UCN to the experimental areas

Bernhard Lauss

Installation of longest UCN guide towards nEDM

PAUL SCHERRER INSTITUT

Bernhard Lauss

ISINN22-2014

ISINN22-2014

PAUL SCHERRER INSTITUT

at 98% ortho-D2 τ_{ucn} dominated

Check conversion of Ortho-to Para-Deuterium

rotational Raman peaks

 \Rightarrow 98 ± 2 % ortho-D₂ reconfirmed in several measurements

Solid deuterium at 5K

Vapor pressure for solidification #12-2

- Construction and commissioning of the source was completed in 2010
- Federal authorities` operation approval obtained in June 2011
- Start-up with first beam August 3, 2011 up to PSI shutdown Dec.2011
- Full operation in 2012 with nEDM commissioning
- Full operation in 2013 with nEDM data taking up to winter shutdown

UCN Operations in 2013

UCN production period May 23 - Dec. 23

69 full days where nEDM could make use of UCN

data taking mode:

- 240 pulses per day
- 7200 pulses per month

UCN measurement at guide West-1

Ultra Cold Neutron Source

Bernhard Lauss

PAUL SCHERRER INSTITUT

Measurement in area West with detector at beam-port

UCN source - status end of 2013

UCN density measurements

ISINN22-2014

Strategy to find places of possible losses or defects

check all steps from neutron production to UCN measurement

Cold neutron flux from tritium activity

$n + d \rightarrow t$

IDEA: tritium activity caused by neutron activation is sensitive to neutron velocity via capture cross section dependence 1/velocity

- established thermal neutron flux

- measure tritium activity / water mixed into calibrated scintillation counter for milliBq tritium determination

- works only with water, we can only take a D2 gas sample
- H2, D2, DT via fuel cell \rightarrow DTO, HTO

simple calculation for expected activation difference assumes: homogeneous n-flux: $2 \times 10^{13} \text{ n/cm}^2/\text{s}$, $\rho_{\text{D2}}=0.2 \text{ g/cm}^3$, $\sigma_{\text{act}}=5 \times 10^{-28} \text{ cm}^{-2}$, $\tau_{\text{Tritium}}=17.7a$, proton charge on target= 74.5 C \rightarrow specific activity $A = 2 \times 10^5 \text{ Bq/gram}$ (thermal neutrons 2200 m/s) $A = 4.5 \times 10^5 \text{ Bq/gram}$ (cold neutrons 900 m/s) \rightarrow our precision goal 30% to see the difference

- first proof of principle in 2013

- within a factor of 2 - 3 in comparison with simulation

Superconducting	Measurement	Measurement	Simulation
magnet status	2012	2013	2012
on - 5 T	0.073 ± 0.010	0.070 ± 0.001	0.083 ± 0.008
off - 0 T	0.130 ± 0.023	0.101 ± 0.002	0.095 ± 0.008

UCN arrival probability in detector at South beam port

Ping Pong - UCN arrival times: simulation matches measurement

full simulation reproduces measurements well
→ no 'big' unknowns in storage vessel or guides
→ UCN loss (except windows) occurs below shutter

A 'calibrated' source of UCN Production in solid thin-film D2

D2 fills with gas \rightarrow exact D2 mass known

- \rightarrow freeze to make a solid thin-film D2 source
- 3 & 6 gram targets \rightarrow thickness 10 50 micron

 \rightarrow no UCN losses occurring within the solid D2 (lifetime is long enough that UCN exit also after multiple scattering)

- established thermal flux
- (soon established) cold flux

- established UCN production cross-section from Golub/Boenig 1983, Yu/Malik/Golub 1985 Atchison et al, PRC71, 2005 Atchison et al, PRL99, 2007

- established UCN transport to detector above the SV shutter (Ping Pong)

 $\rightarrow\,$ check UCN extraction and transport below SV shutter via thin film measurement

A 'calibrated' source of UCN Production in solid thin-film D2

		prelimina
mass (g)	Measurement UCN counts	Simulation UCN Counts
5.77 ± 0.2	28'100±1300	30'000
2.82 ± 0.2	16'070±500	15'000

We plan for several checks in 2014:

- reproducibility
- different thicknesses of D2
- temperature dependence of UCN rate in 1 thin D2 layer

- The UCN source at PSI is commissioned and working well.
- The UCN source has regular beam operation to supply UCN to the nEDM apparatus and other users.
- UCN density improved by factor of about 100 since startup. Further optimization of all source parameters is under way.

Thanks for your attention

UCN @ PSI invites now for Scientific Proposal

PB