Proton-neutron electromagnetic interaction.

ISINN-22, Dubna (27-30 may 2014)

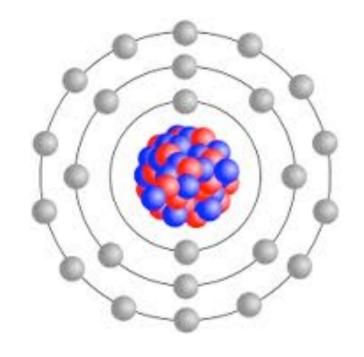
Bernard Schaeffer, Paris, France bschaeffer@wanadoo.fr

Electromagnetic interactions in a nucleus

- A proton attracts **a not so neutral neutron** as amber (ἤλεκτρον, elektron) attracts small **neutral** pieces of paper.
- Nucleons repulse themselves as collinear and opposite magnets (μαγνήτης, magnetis).
- Only the Coulomb repulsion between protons is taken into account in mainstream nuclear physics.

The nuclear shell model

The binding energy of even the simplest bound nucleus, the deuteron ²*H* cannot be calculated with the nuclear shell model, the fundamental laws of the strong force being unknown.



The force center of the nucleus being undefined, we may **assume** that, in contrast with electrons,

nucleons do not move,

as suggested by the drawings of the atom and its nucleus.

Estimation of ²H binding energy

Applying electric Coulomb's law with the measured radius of the proton, $r_p = 0.88 \, fm$, one obtains,

$$\frac{e^2}{4\pi\epsilon_0 r_p} = 1.6 \ MeV$$

not far from **2.2** *MeV*, the measured value of the deuteron binding energy, indicating a possible electric origin of the nuclear interaction.

Proton electric charge

• It is *well known* that the proton contains one positive elementary electric charge, assumed here to be punctual:

$$+e = +1.6 \times 10^{-19}$$
 Coulomb

• The proton-proton repulsion, inexistent in the deuteron, is not the only Coulomb force in a nucleus.

Neutron electric charges

It is *less known* that the **not so neutral neutron** contains electric charges with no net charge, assumed *for the sake of simplicity* to be punctual charges +e and -e (+2e/3, -2e/3 would give a 30% error).

A proton attracts the negative charge of a nearby neutron and repulses its positive charge farther away, resulting in a net attraction, according to the 1/r Coulomb's law.

Electromagnetic contents of ²H

3 electric charges (1/r law):

The proton repulses the +e charge of the neutron and attracts its -e charge, resulting in a **net attraction**.

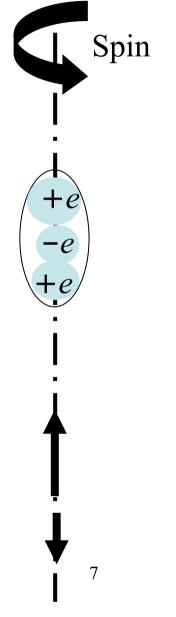
2 magnetic moments $(1/r^3 law)$:

Proton: $\mu_p > 0$

$$|\mu_p| > |\mu_n|$$

Neutron: $\mu_n < 0$

Thus, for collinear and opposite magnetic moments, the resulting magnetic moment is positive, thus **repulsive**.



Exact electric dipole formula

The $2a/r^2$ approximation of the dipole is **invalid** in the deuteron 2H where the proton touches the neutron ($\mathbf{a} \approx \mathbf{r}$).

Therefore, the **exact electric dipole formula** [1] has to be used instead of the usual simplified formula:

$$\frac{e^2}{4\pi\epsilon_0} \left(\frac{1}{r_{np} + a} - \frac{1}{r_{np} - a} \right) \approx -\frac{e^2}{4\pi\epsilon_0} \frac{2a}{\kappa^2}$$

- r_{np} : separation distance between the proton and the neutron.
- 2a: separation distance between the neutron positive and negative charges of the deuteron.
 - [1] B. Schaeffer, Advanced Electromagnetics, Vol. 2, No. 1, September 2013.

Proton-neutron electric potential energy.

Electrostatic energy of 3 aligned punctual electric charges e_p , e_{n-} , e_{n+} :

$$U_e^{^2H} = rac{1}{4\pi\epsilon_0} \left(rac{|e_p e_{n_+}|}{r_{np} + a} - rac{|e_p e_{n_-}|}{r_{np} - a} - rac{|e_{n_+} e_{n_-}|}{2a}
ight)$$

The third term is *unphysically infinite* for an isolated neutron where a = 0. The *intuitive* solution is to replace 1/2a by the **exact** electric dipole potential energy 1/(r+a) - 1/(r-a). The potential is thus **doubbled** and zero for a = 0:

$$U_e^{^2H}=rac{e^2}{4\pi\epsilon_0}\left(rac{2}{r_{np}+a}-rac{2}{r_{np}-a}
ight)$$

The potential, being negative, is attractive.

No empirical polarizability, only fundamental electric Coulomb's law.

Proton-neutron magnetic potential energy

Magnetic dipole-dipole interaction potential energy (interaction between two magnetic moments after Maxwell [2]):

$$U_{m} = \frac{\mu_{0}}{4\pi r_{np}^{3}} \left[\vec{\mu}_{n} \bullet \vec{\mu}_{p} - \frac{3(\vec{\mu}_{n} \bullet \vec{r}_{np})(\vec{\mu}_{p} \bullet \vec{r}_{np})}{r_{np}^{2}} \right] = \frac{\mu_{0}|\mu_{n}\mu_{p}|}{4\pi r_{np}^{3}} \left[-1 - 3(-1)(1) \right] = 2\frac{\mu_{0}|\mu_{n}\mu_{p}|}{4\pi r_{np}^{3}}$$

The potential energy of the ${}^{2}H$ interacting magnetic moments, collinear and opposite, is positive, thus **repulsive**:

$$U_m^{^2H} = 2\left(\frac{\mu_0|\mu_n\mu_p|}{4\pi r_{np}^3}\right)$$

 μ_n and μ_p are the neutron and proton magnetic moments.

[2] J. C. Maxwell, A treatise on electricity and magnetism . Vol. II. 1995, art. 384-387

Proton-neutron Coulomb-Maxwell electromagnetic potential energy

With electric attraction and magnetic repulsion combined, the **total** binding energy potential of ${}^{2}H$ is:

$$U_{em}^{2H} = 2 \left[\frac{e^2}{4\pi\epsilon_0} \left(\frac{1}{r_{np} + a} - \frac{1}{r_{np} - a} \right) + \left(\frac{\mu_0 |\mu_n \mu_p|}{4\pi r_{np}^3} \right) \right]$$

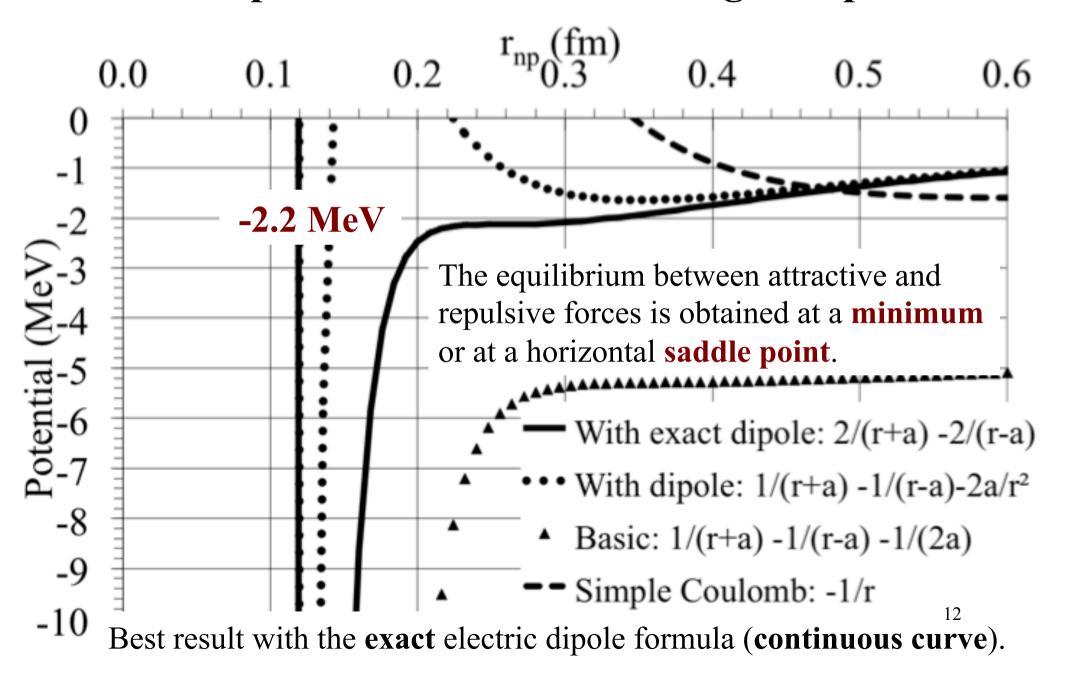
or, numerically:

$$U_{em}^{2H} = 2\left[1.442\left(\frac{1}{r_{np}+a} - \frac{1}{r_{np}-a}\right) + \frac{0.0849}{r_{np}^3}\right]$$

Only fundamental laws and constants.

No fit, empirical parameter or cutoff.

Theoretical proton-neutron electromagnetic potentials



Proton-neutron Schrödinger equation

With the Coulomb-Maxwell potential V, the ${}^{2}H$ Schrödinger equation writes:

$$\frac{\hbar^2}{2m}\Delta\psi + \left[U_{em}^{2H} - V(r,a)\right]\psi = 0$$

With the simplest exponential well $\psi=e^{-r/b}$ and the Coulomb-Maxwell electromagnetic potential, we obtain:

$$\left[\frac{\hbar^2}{2m}\left(\frac{1}{b^2} - \frac{2}{rb}\right) + U_{em}^{2H} - \frac{e^2}{4\pi\epsilon_0}\left(\frac{2}{r+a} - \frac{2}{r-a}\right) - \frac{\mu_0}{4\pi}\left(\frac{2|\mu_n\mu_p|}{r^3}\right)\right]e^{-r/b} = 0$$

Dividing the Schrödinger equation by $e^{-r/b}$, we obtain the classical electromagnetic 2H Coulomb-Maxwell potential except for the first term.

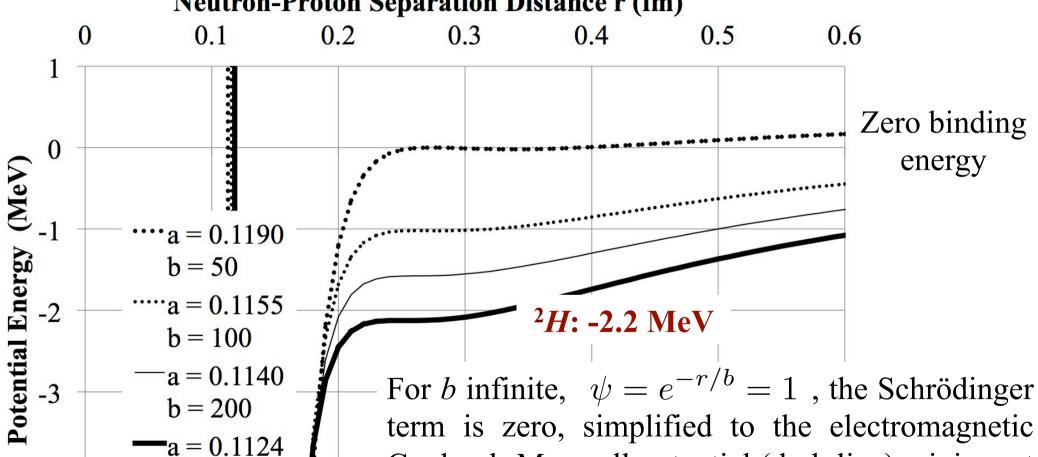
$$\frac{\hbar^2}{2m} \left(\frac{1}{b^2} - \frac{2}{rb} \right) + U_{em}^{2H} - \frac{e^2}{4\pi\epsilon_0} \left(\frac{2}{r+a} - \frac{2}{r-a} \right) - \frac{\mu_0}{4\pi} \left(\frac{2|\mu_n \mu_p|}{r^3} \right) = 0$$

Proton-neutron Schrödinger equation

$$U_{em}^{2H} = -\frac{\hbar^2}{2m} \left(\frac{1}{b^2} - \frac{2}{rb} \right) + \frac{e^2}{4\pi\epsilon_0} \left(\frac{2}{r+a} - \frac{2}{r-a} \right) + \frac{\mu_0}{4\pi} \left(\frac{2|\mu_n \mu_p|}{r^3} \right)$$

Neutron-Proton Separation Distance r (fm)

 $b = 10^6$

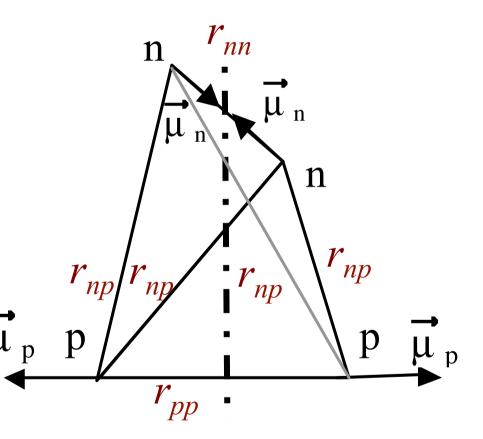


Coulomb-Maxwell potential (dark line), giving, at the saddle point, $-2.2 \, MeV$, the 2H binding energy.

α particle structure

⁴*He*, with 2 protons + 2 neutrons, may be considered in a first approximation as a **regular tetrahedron** with 60° angles.

The magnetic moment of ⁴He being zero, the **magnetic moments** of identical nucleons have to be **collinear** and **oppositely paired**.



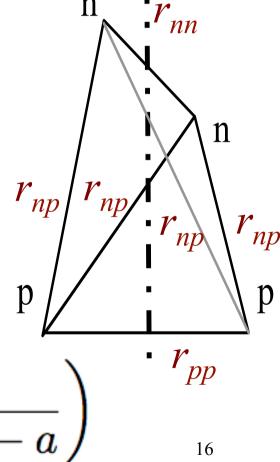
The other nucleon-nucleon interactions, being each ¼ of the total proton-neutron interactions are neglected provisionally.

⁴He electric potential energy

(only proton-neutron interactions considered)

Per nucleon (= per bond in ⁴He)

- 2 protons interacting with each neutron, the electric potential is **twice** that of ²H/A
- ⁴He having one proton-neutron bond, twice the ²H binding energy per nucleon, the electric potential is **again doubbled**
- The electric potential of ⁴He is thus
 4 times larger than that of ²H



$$U_e^{^4He}/A = \boxed{4} imes rac{e^2}{4\pi\epsilon_0} \left(rac{1}{r_{np}+a} - rac{1}{r_{np}-a}
ight) \qquad \stackrel{r}{r_{pp}}$$

⁴He magnetic potential energy

(only proton-neutron interactions considered)

Per nucleon (= per bond in ⁴He)

- 2 protons interacting with each neutron: the magnetic potential is **twice** that of ²H/A.
- The **magnetic potential of one bond** is given by the Maxwell formula of the magnetic dipole-dipole interaction energy:

$$U_m = \frac{\mu_0}{4\pi r_{np}^3} \left[\vec{\mu}_n \bullet \vec{\mu}_p - \frac{3 \left(\vec{\mu}_n \bullet \vec{r}_{np} \right) \left(\vec{\mu}_p \bullet \vec{r}_{np} \right)}{r_{np}^2} \right]$$

The proton and neutron magnetic moments being perpendicular, the first term is zero. Being **inclined** at 60° and 120° with respect to the edges of the tetrahedron, one has $-(-\frac{1}{2} \times \frac{1}{2}) = +\frac{1}{4}$.

• The magnetic part of the 4He binding energy per nucleon is thus $2\times3\times\frac{1}{4} = 3/2$ times larger than that of ${}^2H/A$:

$$U_m^{^4He}/A= \boxed{rac{3}{2}} \left(rac{\mu_0|\mu_n\mu_p|}{4\pi r_{np}^3}
ight)$$

²H and ⁴He potential energies:

(only proton-neutron interactions considered, **per nucleon**, analytical formulas)

The ${}^{2}H$ potential energy per nucleon is $\frac{1}{2}$ of its bond energy:

$$U_{em}^{^{2}H}/A = \frac{e^{2}}{4\pi\epsilon_{0}} \left(\frac{1}{r_{np} + a} - \frac{1}{r_{np} - a} \right) + \frac{\mu_{0}|\mu_{n}\mu_{p}|}{4\pi r_{np}^{3}}$$

The 4He electric potential energy/A is 4 times that of 2H . The 4He magnetic potential energy/A is 3/2 times that of 2H :

$$U_{em}^{^{4}He}/A = \boxed{4} \times \frac{e^{2}}{4\pi\epsilon_{0}} \left(\frac{1}{r_{np}+a} - \frac{1}{r_{np}-a} \right) + \boxed{\frac{3}{2}} \left(\frac{\mu_{0}|\mu_{n}\mu_{p}|}{4\pi r_{np}^{3}} \right)$$

²H and ⁴He potential energies:

(only proton-neutron interactions, per nucleon, numerical formulas)

The ${}^{2}H$ potential energy **per nucleon** is $\frac{1}{2}$ of its bond energy:

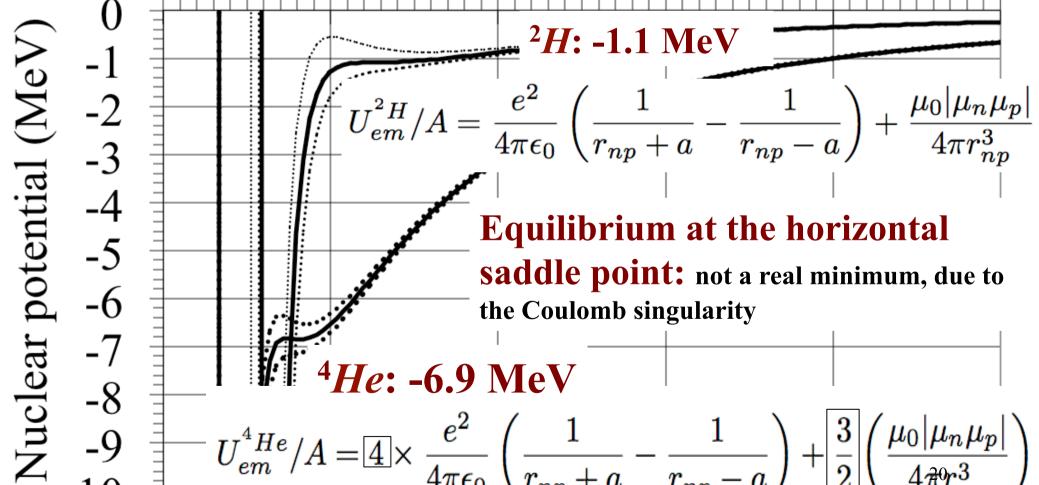
$$U_{em}^{^{2}H}/A = 1.442 \left(\frac{1}{r_{np}+a} - \frac{1}{r_{np}-a} \right) + \frac{0.0849}{r_{np}^{3}}$$

The 4He electric potential energy per nucleon is 4 times that of 2H . The magnetic moments being perpendicular and inclined at 60°, the magnetic potential energy is 1.5 that of 2H :

$$U_{em}^{^4He}/A = 5.76 \left(\frac{1}{r_{np}+a} - \frac{1}{r_{np}-a} \right) + \frac{0.1274}{r_{np}^3}$$
 19

²H and ⁴He potential energies.

Nucleon separation distance r_{np} (fm)



Equilibrium at the horizontal

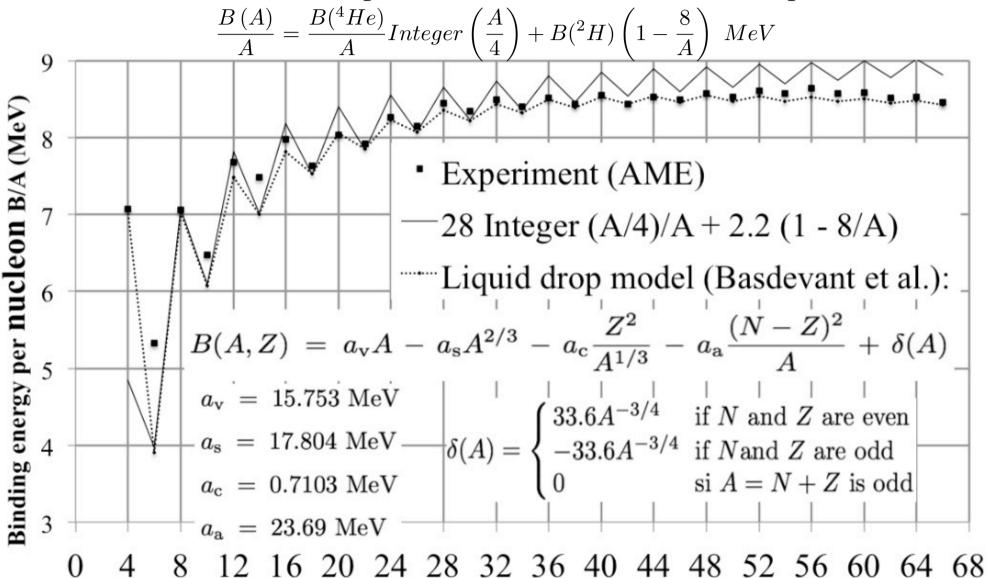
saddle point: not a real minimum, due to the Coulomb singularity

⁴*He*: -6.9 MeV

$$= U_{em}^{^4He}/A = \boxed{4} imes rac{e^2}{4\pi\epsilon_0} \left(rac{1}{r_{np}+a} - rac{1}{r_{np}-a}
ight) + \boxed{rac{3}{2}} \left(rac{\mu_0|\mu_n\mu_p|}{4\pi^0 r_{np}^3}
ight)$$

Pairing effect of N=Z nuclei

Calculated as proton-neutron bonds between **a** particles:



20 24 28 32 36 40 44 48 52 56 60 64 68 Atomic mass number A

Fundamental nuclear constants

Electric:

$$\frac{e^2}{4\pi\epsilon_0 R_P} = \alpha m_p c^2 = 6.846 \ 901 \ 65 \ MeV$$

Magnetic:

$$\frac{\mu_0 |\mu_n \mu_p|}{4\pi R_P^3} = \alpha m_p c^2 \frac{|g_n g_p|}{16} = 9.147 \ 871 \ 896 \ MeV$$

 R_P : proton Compton radius, 0.210 308 910 fm $\approx r_p/4$

 r_p : proton radius g_p : proton Landé factor

 m_p : proton mass g_n : neutron Landé factor

 α : fine structure constant

H, ²H, ⁴He, ⁵⁸Fe energies compared (absolute values)

• *H* atom binding energy: $13.6 \ eV \approx \frac{1}{2}\alpha^2 m_e c^2$

Binding energy per nucleon:

•
$2H$
 : 1.11 $MeV \approx \frac{1}{6} \alpha m_p c^2$ 80.000

- ${}^{4}He$: 7.07 $MeV \approx 6.85 \ MeV = \alpha m_{p}c^{2}$ 500.000
- 58 Fe: 8.79 $MeV = 1.28 \ \alpha m_p c^2$ 650.000

Nuclear to chemical energy ratio order of magnitude:

$$\frac{m_p}{\alpha m_e} = 250,000$$

 m_p : proton mass

 m_e : electron mass

 α : fine structure constant

Discussion

Doubtful

- Strong force (unknown but strength 1!)
- Magic numbers (numerology)
- Charge independence (neutron has +e,-e)
- Quark (virtual, unobservable, undetectable)
- Schrödinger equation (no kinetic energy: useless)
- With the bare application of electric and magnetic forces with fundamental constants only, the binding energies of ²H and ⁴He nuclei have been calculated without fitting, cutoff, input parameter...

The quantitative adequation (no fitting) between theory and experiment proves the electromagnetic nature of the nuclear energy.

Спасибо за внимание Thank you for your attention