PAUL SCHERRER INSTITUT

CSNSM

LPSC

PB

UNI FR

University of Sussex

nEDM @ PSI

Searching for the electric dipole moment of the neutron

Event Date Name

The collaboration

Dubna

- Eight countries
- 48 Members
- 11 PhD students

2

UCN SOURCE & EDM

Introduction

- Why search for an nEDM?
- How do we search for it?

Status at PSI

- The UCN source
- Statistical sensitivity

Neutron/mercury gyromagnetic ratio

- Magnetometry
- Preliminary Results

A non-zero particle EDM violates *P*, *T* and, assuming *CPT* conservation, also *CP*.

5

Phenomena not explained by Standard Model

Name

Gravity

The Standard model does not explain Gravity.

• Dark matter /Dark energy

Only about 4% of the Universe's energy content are explained by the SM.

Matter/Anti-matter asymmetry

Observed asymmetry and SM expectation disagree by a factor 10⁸

g-2 of muon and muonic hydrogen The g-2 value for muon disagrees by 3.3σ
 The proton radius from muonic hydrogen disagrees by 7σ

DE

6

Baryon Asymmetry of the Universe

VS.

SM expectation:

$$\frac{n_B - n_{\overline{B}}}{n} \sim 10^{-18}$$

Observed*:

 $\frac{n_B - n_{\overline{B}}}{2} \sim 10^{-10}$ n_{ν}

*WMAP + COBE (2003) (6.19 ± 0.15) x 10⁻¹⁰ [E. Komatsu et al. 2011 ApJS 192]

Sakharov criteria

- 1. Baryon number violation
- 2. C and CP violation
- 3. Thermal non-equilibrium

nu

Name

CP violation and EDM

B R

Name

Event, Date

8

nu

A nonzero neutron EDM violates P, T and, assuming CPT conservation, also CP.

- $\rightarrow \mathscr{P}$ so far only in weak interaction
- → Excellent probe for physics beyond the Standard Model
- → Might explain BAU (matter/anti-matter problem)
- \rightarrow Sensitive to the θ -term in QCD

 $\hbar \Delta \omega = 2d_{\rm n} (E_{\uparrow\uparrow} + E_{\uparrow\downarrow}) + 2\mu_{\rm n} (B_{\uparrow\uparrow})$

Introduction

- Why search for an nEDM?
- How do we search for it?

Status at PSI

- The UCN source
- Statistical sensitivity

Neutron/mercury gyromagnetic ratio

- Magnetometry
- Preliminary Results

Filling UCN

• Optimize product $\alpha \sqrt{N}$

Storage life time

15

- Chamber made of dPS insulator ring and DLC electrodes
- Two exp fit: *t*_s~30s $t_{\rm f} \sim 180 {\rm s}$
- Max no. UCN measured after 180s storage:

 \rightarrow Excellent magnetic field homogeneity

Event, Date

- Best HV performance 144 kV \rightarrow 12.0 kV/cm
- Average E-Field while data taking: 10.3 kV/cm

Filling UCN

• Optimize product $\alpha \sqrt{N}$

Neutron EDM sensitivity

 $\sigma = \frac{\hbar}{2\alpha TE\sqrt{N}}$

PAUL SCHERRER INSTITUT

	RAL/Sx/ILL*		PSI 2012		PSI 2013	
	best	avg	best	avg	best	avg
E-field	8.8	8.3	8.33	7.9	12	10.3
Neutrons	14 000	14 000	9 000	5 400	10 500	6 500
T _{free}	130	130	200	200	200	180
T _{duty}	240	240	360	360	340	340
Α	0.6	0.453	0.65	0.57	0.62	0.57
σ/d (10 ⁻²⁵ ecm)	2.3	3.0	2.3	3.5	1.5	2.8

2013 data taking: 3266 cycles

25 days

Stopped by switch break down

2013 accumulated sensitivity 6×10-26 e.cm

* Best nedm limit: Baker *et al.*, PRL**97**(2006)

Name

19

Introduction

- Why search for an nEDM?
- How do we search for it?

Status at PSI

- The UCN source
- Statistical sensitivity

Neutron/mercury gyromagnetic ratio

- Magnetometry
- Preliminary Results

Mercury co-magnetometer

Cesium gradiometer

Monitoring of vertical magnetic gradients

- Six HV CsM
- Ten ground CsM
- Stabilized laser
- PID phase locked DAQ

There are two drawbacks using the HgM

Name

Event, Date

25

nu

Frequency ratio $R = f_n/f_{Hg}$

• Field parameterized by 9 parameters (next-to-linear)

 $B(x, y, z) = B_0 + g_x x + g_y y + g_z z + g_{xx} (x^2 - z^2) + g_{yy} (y^2 - z^2) + g_{xy} xy + g_{xz} xz + g_{yz} yz + g_{xy} xy + g_{$

- The parameters are adjusted to 12 magnetometers readings using least squares
- Residuals are about 30 pT (500 pT using linear model)
- Jackknife procedure to estimate the error on the gradient G

Vame

Transversal fields

UCNs:

Adiabatic regime: $f_n \propto \langle \left| \vec{B} \right| \rangle = B_0 + \frac{\langle B_T^2 \rangle}{2B_0}$

Mercury:

Non-adiabatic regime:

$$f_{\rm Hg} \propto |\langle \vec{B} \rangle| = B_0$$

- Mapping with fluxgate and vector cesium magnetometer
- -20<z<20, -10<r<30,

sium magnetometer
$$\delta R_{\text{Transverse}} = (3 \pm 1) \times 10^{-6}$$

b, -10\Delta \varphi = 5^{\circ}
 $R = \frac{\langle f_{\text{UCN}} \rangle}{\langle f_{\text{Hg}} \rangle} = \frac{\gamma_{\text{n}}}{\gamma_{\text{Hg}}} \left(1 \mp \frac{\partial B}{\partial A_{0}} + \frac{\langle B^{2} \rangle}{|A_{0}|^{2}} \mp \delta_{\text{Earth}} + \delta_{\text{Hg-lightshift}} \right)$

Name

Event, Date

31

nu

Hg lightshift

 While probing the precessing Hg-atoms a change in frequency occurs proportional to the intensity of the light beam.

Conclusion

- The UCN source delivers sufficient statistics for data taking, potential improvements are being identified
- The nEDM experiment is taking data, operational reliability has been improved during shutdown 2014
- As a test of magnetic field control we have measured the most precise gyromagnetic ratio of mercury-199 and neutron.
- We expect with 300 data-days until 2016 a statistical sensitivity of $\sigma \leq 10^{-26} e$ cm

33

nu

Name

ø

Thank you for your attention.

ilipp Schmidt-