

Standard questions

27 May 2014, ISINN-22, Dubna, Russia

Development of a universal monitor of low intensity neutron + gamma radiation fields

Inte and Money

The picture shows the hardware of a modern scintillation spectrometer, i.e. the PC-based MCA containing high voltage bias supply, preamplifier, linear amplifier, analog to digital converter and multichannel analyser system. All components and settings are controlled by software and they can be automatically set by default via batch files.

Requirements

2012 R&D 100 Awards

To consist of well known and often used detector's types

Easy to handle , transported, setting-up, powered, readout

One detector to be sensitive to neutron and gamma radiation of different energies (up to ~8MeV) and of count rates of ~1-2-3 000 pps

Easy to calibrate

Freeware readout software

Easy check of its operability (serviceability)

A Solid Solution for Neutron and Gamma-Ray Differentiation

Relatively cheap in comparison with the other monitors

"Anything that is complex is not useful and anything that is useful is simple. This has been my whole life's motto." Mikhail Kalashnikov

> "Before attempting to create something new, it is vital to have a good appreciation of everything that already exists in this field."

Good Old Multi-detector Gamma-ray Spectrometry Systems

Fig. 1. Experimental equipment: 1 – reactor shielding, 2 – multislit collimator, 3 – neutron chopper, 4 – paraffin with boric acid, 5 – lead, 6 – photomultipliers, 7 – NaI(TI) crystals, 8 – lithium-6 carbonate shielding, 9 – solid state detectors, 10 – sample, 11 – vacuum sample holders.

Fig. 1. Longitudinal and transversal section view of the multisectional scintillation γ -detector "Romashka" (not in scale): (1) collimator; (2) filter; (3) NaI(Tl) crystals; (4) photo multipliers; (5) sample; (6) converter; (7) vacuum tube; (8) lead shielding; (9) B₄C shielding.

Neutron-gamma field intensity and absorbed doses simulation at some points of "Romashka" experimental setup

Fig.6 Simulated IREN differential neutron spectra at the target side and corrected spectra at FP/27m (non-vacuum guide)

Fig.7 Simulated IREN integral normalized photon spectrum at the target side

A.O. Zontikov¹, D. Grozdanov^{1,2}, I. Ruskov^{1,2}, Yu.N. Kopatch¹

Fig.8 Spatial distribution (central horizontal slice of the setup) of the neutron flux

Fig.9 Spatial distribution (central horizontal slice of the shielded detector) of the photon flux generated by the incident neutron beam

$$\xi = \ln \frac{E_0}{E} = 1 + \frac{(A-1)^2}{2A} \ln \left(\frac{A-1}{A+1}\right) \qquad \xi \simeq \frac{2}{A+1}$$

moderator nucleus

1: The moderating power and ratio of common moderators

 $\xi \Sigma_s \qquad \qquad \xi \Sigma_s / \Sigma_a$

	Moderating power	Moderating ratio
Moderator	(1 eV - 100 keV)	(approximate)
Water	1.28	58 L
Heavy water	0.18	21000 к
Polyethylene	3.26	122
Graphite	0.064	200
		Neutron

${}^{1}H + {}^{1}n \xrightarrow{\sim} {}^{2}H + \gamma$ Gamma ray energy (E_{γ}) = 2.22 MeV

P. Rinard. Neutron interactions with matter. In D. Reilly, N. Ensslin, and H. Smith, Jr., editors, Passive Nondestructive Assay of Nuclear Materials.

1991.

Charcoal drawing created with the moderator graphite used in the first nuclear chain reaction (from left: Leo Szilard, Arthur Compton, Enrico Fermi and Eugene Wigner)

http://wigner.mta.hu/wigner_en.html

Table 10 The most useful neutron-absorbing isotopes and the key features of the neutron interactions at 25 meV. Cross sections, σ , are tabulated to the nearest 10 barns, and to the nearest 1000 barns for Gd. This helps emphasize the huge stopping power of Gd relative to the other isotopes.

lsotope	State	σ (barns)	Neutron absorption length	Particle energies	Approximate Range R particle range		
³ He	Gas	5330	70 mm.atm	p: 573	t: 191	3.8 mm.atm C₃H ₈	
۴Li	Solid	940	230 µm	t: 2727	α: 2055	130 µm	
¹⁰ B	Solid	3840	20 µm	α: 1472 ⁷ Li: 840		3 µm	
¹⁰ BF3	Gas	3840	97 mm.atm	α: 1472 ⁷ Li: 840		4.2 mm.atm	
Nat. Gd	Solid	49000	6.7 μm	Conv ⁿ electrons: -30-200		12 μm	
¹⁵⁷ Gd	Solid	254000	l.3 μm	Conv ⁿ electrons: -3	l2 μm		

HYDROGEN	Active element	Detector type	Concentration (% weight)	Gamma energy (keV)	Net count rate (cps)	Background count rate (cps)	
()				558.6 651 3	1.95±0.01	0.29	
V Good		HPGe	7.5	806.0	0.24±0.01	0.24	C.S.
	C4			1209.4 1364 2	0.07±0.01	0.09	\checkmark
Hydrogen is the smallest, lightest, and H	Cu			1399.0	0.05±0.01	0.04	Cadmium can be found in some paint pigments.
-		NaI(Tl)	7.5	558.6	7.46±0.19	34.00	
				551.3	2.06±0.14	20.35	
5 BORON				897.3	0.08±0.01	0.19	54 GADOLINIUM
				944.0	0.09±0.01	0.20	<u> </u>
	Gd	HPGe	10.4	961.8	0.07±0.01	0.20	
				977.2 1107.3	0.04±0.01	0.12	
]			1186.5	0.04±0.01 0.13±0.01	0.25	
		HPGe	1	478	4.20±0.01	1.34	
Boron is a subdued element that produces a bright green flame.	В	NaI(Tl)	1	478	21.99 ± 1.06	38.33	There aren't many uses for Gadolinium, but its alloys can be found in data CDs.
	\setminus	BGO	1	478	16.95 ± 0.82	23.82	
		IIDC	50.0	786 - 789	0.66±0.01	1.02	
SODIOM		HPGe	8.00	1950 - 1960	0.43±0.01 0.14±0.01	0.16	CHLOKINE
				786 - 789	2.50±0.05	15.63	and the second sec
	Cl	NaI(Tl)	56.8	1164.7	1.74±0.04	12.12	
	\setminus			786 - 789	4 27+0 07	21.36	
Sodium is found in the occas, but the		BGO	56.8	1164.7 1950 -1960	5.23±0.07 4.20±0.07	16.31 10.63	Inhaling Chlorine gas can cause
pare mean reacts relicing with water.							our mig at the eyes and smoses.

Table 2: The count rates obtained for the different detectors with converters of optimal thickness.

http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/35/066/35066094.pdf

Use of gamma-ray spectroscopy for direct detection of thermal neutrons

 $\sigma({}^{10}B(n, \alpha)) = 3840 \text{ barn} \\ \sigma({}^{nat}B(n, \alpha)) = 760 \text{ barn}$

nat: 19.8% -> ¹⁰B 70.2% -> ¹¹B F. Ghanbari, A. H. Mohagheghi

Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 USA

(Received December 13, 2000)

Journal cf Radioanalytical and Nuclear Chemistry, Vol. 248, No. 2 (2001) 413-416

$${}^{10}\text{B} + {}^{1}\text{n} \rightarrow \begin{cases} {}^{7}\text{Li} + {}^{4}\alpha, {}^{7}\text{Li} \text{ formed in ground state (6\%)} \\ {}^{7}\text{Li} + {}^{4}\alpha, {}^{7}\text{Li} \text{ formed in excited state (94\%)} \\ {}^{|}_{\rightarrow} {}^{7}\text{Li} + \gamma(478 \text{ keV}) \end{cases}$$

²³Na +¹ n
$$\rightarrow$$
²³Na * (100%)
 σ_{th} =430mb \mid_{\rightarrow}^{24} Na + γ (473 keV)

Use of gamma-ray spectroscopy for direct detection of thermal neutrons

F. Ghanbari, A. H. Mohagheghi

Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 USA

(Received December 13, 2000)

Journal cf Radioanalytical and Nuclear Chemistry, Vol. 248, No. 2 (2001) 413-416

Using a Borated Panel to Form a Dual Neutron-Gamma Detector

Scott Wilde^a, Raymond P. Keegan^a, Leo Van Ausdeln^b

 ^aRemote Sensing Laboratory for the U.S. Department of Energy, P.O. Box 98521, Mail Stop RSL-44, Las Vegas, NV 89193-8521, USA.
^bIdaho National Laboratory, 2525 North Fremont Street, P.O. Box 1625, Idaho Falls, ID 83415, USA.

Figure 1: The experimental layout to measure the count rate buildup factor.

http://www.osti.gov/scitech/servlets/purl/934444

2008-07-01 <u>http://www.osti.gov/scitech/servlets/purl/934442</u>

RESULTS

Data was collected in February 2007 for a live time of 1,800s. The net counts under the 478 keV peak were 11,286 \pm 324. This plane was replaced by a disk cut from a corner of the plane of 9.6 cm diameter. The experimental run was performed again for the same live time yielding 2,462 \pm 268. The buildup factor was calculated as the ratio of the plane to disk counts and was found to be 4.6 \pm 0.5. A second run was performed in June 2007 for a live time of 7,048s for the plane and 7,200s for the disk with everything else the same as before. The buildup factor was determined as before to be 4.3 \pm 0.4. The average buildup factor is therefore 4.4 \pm 0.3.

Fig. 1. The countrates of the plane and the disk versus energy of the photons counted, the distance from the source to the detector was 1 meter.

<u>2013</u>

NUCLEAR INSTRUMENTS

IN

Nuclear Instruments and Methods in Physics Research A 697 (2013) 59-63

Contents lists available at SciVerse ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Neutron detection with a NaI spectrometer using high-energy photons

Philip Holm*, Kari Peräjärvi, Ari-Pekka Sihvonen, Teemu Siiskonen, Harri Toivonen

Radiation and Nuclear Safety Authority (STUK), Laippatie 4/P.O. Box 14, 00881 Helsinki, Finland

ARTICLE INFO

Article history: Received 25 June 2012 Received in revised form 3 September 2012 Accepted 5 September 2012 Available online 12 September 2012

Keywords: Neutron detection Gamma spectrometry Nal

ABSTRACT

Neutrons can be indirectly detected by high-energy photons. The performance of a $4'' \times 4'' \times 16''$ Nal portal monitor was compared to a ³He-based portal monitor with a comparable cross-section of the active volume. Measurements were performed with bare and shielded ²⁵²Cf and AmBe sources. With an optimum converter and moderator structure for the NaI detector, the detection efficiencies and minimum detectable activities of the portal monitors were similar. The NaI portal monitor preserved its detection efficiency much better with shielded sources, making the method very interesting for security applications. For heavily shielded sources, the NaI detector was 2–3 times more sensitive than the ³He-based detector.

© 2012 Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/article/pii/S016890021201025X

Neutron detection with NaI spectrometers

Due to the worldwide shortage of ³He, alternative methods to detect neutrons are actively studied. One alternative approach for neutron detection is to use high-energy gamma-rays produced in (n,γ) -reactions. In addition to the neutron capture gamma-rays, neutron sources also emit high energy gamma-rays by themselves. The method has potential in security applications due to the low background, the easy penetration of the high energy gamma-rays and the small amount of modification needed for gamma-spectrometers already in use. STUK studied the use of a Nal portal monitor as a neutron detector.

This work was supported by the Scientific Advisory Board for Defense.

Features

- Performance comparable with ³He-tube
- Gamma-spectrometry up to 8 MeV
- Plastic moderator and converter
- Easy integration in regular gamma spectrometers
- Low background
- Characterization of neutron source properties
- Simple analysis with combined neutron and gamma detection
- Automated detection and consistent with VASIKKA software

Fig. 1. GEANT4 model of a $5^{\prime\prime}x4^{\prime\prime}$ cylindrical Nal detector surrounded by a moderator. The yellow dots indicate neutron capture reactions.

Fig. 2. 4"x4"x16" Nal detector moderated with PE.

Concept

In field gamma spectrometry often relies on Nal detectors. Spectrometers are normally set to cover the energy region from 0 to 3 MeV. The covered range is partly restricted by the commercially available hardware, i.e., Multi Channel Analyzers, which often only produce spectra with 1024 channels. Recently, integrated systems able to produce 2048 channel spectra have become commercially available. This development enables the extension of energy range up to about 8 MeV without significantly worsening the resolution.

The neutron induced gamma rays up to 8 MeV were measured using a 4"x4"x16" and a cylindrical (diameter 4" and thickness 5") Nal detector [1]. Similar measurements were performed in Ref. [2]. The neutron detection efficiency can be improved significantly by adding moderators and converters around the detector.

Results

Fig. 3 shows the gamma-spectrum of an 18 kBq ²⁵²Cf source at a distance of about 55 cm. The measurement, which was performed with the moderated 5"x4" Nal detector, shows the significant yield of high energy gamma-rays in the presence of the neutron source. The peaks at 6.8 MeV and 6.3 MeV are mostly due to iodine, but also sodium. Because of the small and even background, all counts over 3.5 MeV can be utilized for neutron detection.

Fig. 3. Spectra showing the increased count rate at high energies due to the ²⁵³Cf source. The neutron flux was about 0.06 neutrons/(scm²) at the detector surface.

The effect on different converters and moderators (Fe, PVC and PE) surrounding the Nal portal monitor was studied. Fig. 4 shows how moderators and converters improve the detection efficiency. Note that with thin converters/moderators, the improvement of the efficiency is due to the moderator. However, with thicker layers of materials, the effect of the converter is significant.

Fig. 4. Absolute neutron efficiencies with boosters of different thickness. The measurements were performed with a Cf-252 source at a source-detector distance of 2 m.

Applications

The Nal portal monitor was compared to a ³He-based portal monitor of similar size. A 10-cm-thick PVC/PE sandwich converter was used with the Nal portal monitor. The minimum detectable activities (MDA) of the portal monitors were similar. In fact, the indirect gamma spectrometric method produced better results for shielded neutron sources. The Nal detector is thus very suitable for neutron portal monitoring and other security applications. The combined neutron and gamma detection is cheap, analysis is easy to perform and neutron sources can to some extent be characterized with the spectral information.

References

- P. Holm et al., Nuclear Instruments and Methods in Physics Research A 697 (2013) 59.
- [2] D. J. Mitchell et al., IEEE Transactions on Nuclear Science 57 (2010) 2215.

Neutron detection with Nal spectrometers

ПВХ жесткий (компактный)

Пластик ПВХ жесткий (компактный, сплошной) представляет собой плотный с однородной внутренней структурой экструзионный лист с ровной гладкой поверхностью и стабильной плотностью (1.36 - 1,44 г/см3, в зависимости от производителя). Стандартные листы ПВХ имеют с обеих сторон гладкую матовую поверхность, что обеспечивает высокую степень защиты от ультрафиолетового излучения, а также высокую стойкость к

неблагоприятным атмосферным воздействиям.

Одна сторона ПВХ покрыта защитной пленкой

ПВХ жесткий широко используется в рекламе, пищевой, электротехнической и химической промышленности и в мебельной индустрии.

Достоинства ПВХ жесткого

- высокая ударопрочность и прочность на изгиб
- хорошие механические характеристики
- легкая обрабатываемость обычными инструментами
- поверхность идеальна для различных видов печати, окрашивания
- легкость при склеивании, термо- и вакуумформовании, монтаже
- не подвержен коррозии
- не впитывает воду и атмосферную влагу из воздуха
- высокая степень звуко- и теплоизоляции
- способность поглощать вибрации
- высокая химическая стойкость
- отсутствие токсичности
- низкая воспламеняемость

Область применения жесткого ПВХ

- Реклама: выставочные стенды, указатели, вывески, буквы, витрины.

 Строительство: сэндвич-панели, оконные откосы, дверные филенки, детали внутреннего интерьера, внутренняя отделка помещений с повышенной влажностью, перегородки, в системах кондиционирования воздуха и вентиляции, тепло- и звукоизоляции и т.д.
Промышленность: отделка холодильных камер, корпуса машин, гальванотехника, лабораторное и фотооборудование, резервуары для химической промышленности, производство вентиляторов, мебели, электротехника.

Купить, как вспененный ПВХ, так и ПВХ жесткий в Санкт-Петербурге вы можете у нас!

Table C.2.1: The absolute efficiency of 6–7.2-cm-thick boosters normalized to the absolute efficiency with the 6-cm-thick PE booster. The measurements were performed with the Cf1 source at a source-detector distance of 2 m. The booster structure (plate order starting from the detector side) is shown in the left column. The standard deviation is $\leq 1\%$

Booster structure	Norm. ε_{abs} [%]
PE/PE/PE	100
PVC/PE/PVC	119
PVC/PVC/PVC	112
PE/PE/Fe/Fe/Fe/Fe	108
$\rm Fe/PE/Fe/PE/Fe/PE/Fe$	107
Fe/PVC/Fe/PVC/Fe/PVC/Fe	101
Fe/Fe/PE/PE/Fe/Fe	96.4
$\rm Fe/Fe/Fe/Fe/PE/PE$	85.2

Table C.2.2: The absolute efficiency of 10-cm-thick PVC boosters normalized to the absolute efficiency with the PVC/PE10cm sandwich. The measurements were performed with the Cf1 source at a source-detector distance of 2 m. The booster structure (plate order starting from the detector side) is shown in the left column. The standard deviation is $\leq 1\%$

Booster structure	Norm. ε_{abs} [%]
PVC/PE/PVC/PE/PVC	100
PE/PE/PVC/PVC/PE	99.9
PE/PE/PE/PVC/PVC	96.1
PE/PE/PVC/PE/PE	95.0
PE/PE/PE/PE	82.7

Amcrys Nal(TI) & Hamamatsu PMT modules

http://www.amcrys.com/products

Туре	Head-on type	Anode to Cathode Supply Voltage	1000 V
Tube Size	Dia.51 mm	[Cathode] Luminous Sensitivity Min.	80 µA/Im
Photocathode Area Shape	Round	[Cathode] Luminous Sensitivity Typ.	110 µA/lm
Photocathode Area Size	Dia.46 mm	[Cathode] Blue Sensitivity Index (CS 5-	12.0
Wavelength (Short)	300 nm	58) Typ.	
Wavelength (Long)	650 nm	[Cathode] Radiant Sensitivity Typ.	95 mA/W
Wavelength (Peak)	420 nm	[Anode] Luminous Sensitivity Min.	3 A/Im
Spectral Response Curve Code	400K	[Anode] Luminous Sensitivity Typ.	30 A/lm
Photocathode Material	Bialkali	[Anode] Radiant Sensitivity Typ.	2.6 x 10 ⁴ A/W
Window Material	Borosilicate glass	[Anode] Gain Typ.	2.7 x 10 ⁵
Dynode Structure	Box-and-grid	[Anode] Dark Current (after 30min.) Typ.	2 nA
Dynode Stages	8	[Anode] Dark Current (after 30min.) Max.	20 nA
[Max. Rating] Anode to Cathode Voltage	1500 V	[Time Response] Rise Time Typ.	7.0 ns
[Max. Rating] Average Anode Current	0.1 mA	[Time Response] Transit Time Typ.	60 ns

EM/3.VD.PA.HVG.001

OC@isc.kharkov.com

USB Parsek 4k/8k ADC

Parsek LLC 141980 Dubna, Moscow region http://www.parsek.ru/en/ Tel/Fax: (09621) 4-02-77 Ul. Pravdy, 24. e-mail:parsek@dubna.ru www.parsek.ru 4K spectrometric ADC with USB interface and USB bus supply Specification: Wilkinson Conversiontype Number of analog inputs 1 Amplitude of input pulses 40 mV - 4,0 V Rise time not less $0.5 \,\mathrm{mks}$ 20.0 mks not more 232.4096 Charger channel capacity Number of output bits (channels) 12 (4096) Conversion frequency 100 MHz Integral non-linearity 0,04% Differential non-linearity +1,0% at the level 5 \cdot 10⁴ in the channel Value of drift of generating peak, not worse then 0,1% within 8 hours of continuous work Time of test 5,0 mks (or by order) Power requirements +5 V 470 mA (2,35 Vatt) Structure / construction: Plastic body 150x80x30 mm Bus type USB

¹³⁷Cs 661.7 keV γ-rays amp. spectrum (- bkg)

¹³⁷Cs 661.7 keV γ-rays amp. spectrum (- bkg)

¹³⁷Cs 661.7 keV γ-rays amp. spectrum (+ bkg)

¹³⁷Cs 661.7 keV γ-rays amp. spectrum (+ bkg)

without the need for expensive NIM based systems

Table III. Properties of typical soundcard.

	Soundblaste	er Digital music PX (Creative tech. LTD.)
Connection	USB (Exter	nal Connection with Computer)
Sampling rate	44.1 kHz	or PCI
Band width	20 kHz	C-Media CMI 8738 4-Channel PCI Sound Card
Resolution	Signed 16 b	it 🖉
Full Scale	$\pm 2V_{rms}$	

The sound card has 16 bits for a range from-2V to+2 V (line-in full scale) and 15 bits for positive inputs.

A 10-bit effective resolution requires the peak widths (standard deviation σ) to be less than 5-bits wide (< $2^5 = 32$ - channels).

Home > Publishers > American Association of Physics Teachers > American Journal of Physics > Volume 81, Issue 10 > Article

http://scitation.aip.org/content/aapt/journal/ajp/81/10/10.1119/1.4816264

Development of the low-cost multi-channel analyzer system for γ-ray

spectroscopy with a PC sound card () CrossMark

Kenkoh Sugihara^{1,a)}, Satoshi N. Nakamura¹, Nobuyuki Chiga¹, Yuu Fujii¹ and Hirokazu Tamura¹ 2 Download PDF

+ VIEW AFFILIATIONS

a) Electronic mail: sugihara@cmpt.phys.tohoku.ac.jp

Am. J. Phys. 81, 792 (2013); http://dx.doi.org/10.1119/1.4816264

A low-cost multi-channel analyzer (MCA) system was developed using a custom-build interface circuit and a PC sound card. The performance of the system was studied using γ-ray spectroscopy measurements with a NaI(TI) scintillation detector. Our system successfully measured the energy of γ-rays at a rate of 1000 counts per second (cps).

AIP Conf. Proc. 1584, 50 (2014); http://dx.doi.org/10.1063/1.4866103

Conference date: 30 September-2 October 2013

Location: Kuala Lumpur, Malaysia

Additional sign in Sign in via Shibboleth/Athens Export citations ~ Add to my favorites Recommend to library Subscribe to email alerts Reprints & Permissions

This paper describes the development of Multi-Channel Analyzer (MCA) using sound card analogue to digital converter (ADC) for nuclear spectroscopy system. The system was divided into a hardware module and a software module. Hardware module consist of detector Nal (TI) 2" by 2", Pulse Shaping Amplifier (PSA) and a build in ADC chip from readily available in any computers' sound system. The software module is divided into two parts which are a preprocessing of raw digital input and the development of the MCA software. Band-pass filter and baseline stabilization and correction were implemented for the pre-processing. For the MCA development, the pulse height analysis method was used to process the signal before displaying it using histogram technique. The development and tested result for using the sound card as an MCA are discussed.

http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4866103

The History of Sound Card Spectrometry

Sound Card Spectrometry was developed in Australia by Marek Dolleiser.

Marek works at The University of Sydney, with third year physics students, and developed **PRA** as an educational tool for his students.

His novel pulse shape algorithms and software performed so well, he decided to offer it to everyone for free.

After the Fukushima nuclear disaster the software became popular in Japan and spread to the rest of the world like wild fire.

This in turn inspired many other software writers, who also added their own versions of free sound card spectrometry software.

To this day, the software is being improved, and there is healthy competition between software authors, who can produce the best version.

> Take your pick below, **PRA**, **BecqMoni**, **Theremino**, **GeigerBot**, **Fitzpeaks**, all work well and have their own features and benefits.

I do recommend you start with **PRA** which was the original and still in my opinion the one that consistently performs to scientific standards.

Steven Sesselmann

Gamma Spectrometry Software

The FitzPeaks Gamma Analysis Software is a combined research and general purpose gamma spectroscopy analysis and calibration program capable of operating on spectral data from a variety of different manufacturer's systems. It is designed to run under all 32 bit versions of Microsoft® Windows™

The main algorithms used for finding and fitting peaks, and performing the quantitative analysis are based on methods presented in a paper describing the program SAMPO80 produced by M.J. Koskelo, P.A. Aarnio and J.T. Routti of the Helsinki University of Technology, Finland.

The peak search algorithm is based on finding minima in the smoothed second difference of the spectral data. The peak fitting is performed using a linear least squares routine, fitting the data to a Gaussian function with an exponential tail on either the low energy, or both sides of a peak. There is an optional iterative fitting for peak position, width, and low energy tailing.

The program is capable of operating in a range of modes, from a fully automated analysis through to a completely interactive mode. In the interactive modes comprehensive displays are presented, allowing the user to insert new peaks into the spectrum, change the widths of fitting regions, change the type of background continuum used, etc.

GS-1100A with Fitzpeaks (Nal) version gives excellent results (see screen dumps below).

An evaluation version of Fitzpeaks (Nal) can be downloaded from http://www.jimfitz.demon.co.uk/

	Ele MCA Set-Up Calibrate Analyse Peak F	a Analysis software - Evaluation copy
	MCA Set-Up	Plot of MCA Input level
The set state -	Positive Input C Negative Input	Linear Plot - Y Max is 84
	ADC LLD:- 10 ADC ULD:- 1024	
SS R	Amp Gain	
	2. 1 150	
	Australia Australia - 1024	
	ADD D D D	
	ADL Hange Digisor :- 64	
	Baseline points :- 6 Delay :- 6 (1.9) (0.9)	
I 🖻 🥂 I	Ingger Threshold - 4 Syrap L/R	
Mic ¹ Line in	Max Readings for Conversion - 25	
	Max Readings on leading edge :- 6	
A ST	F Baseline Correct Readings:- 4	
	Perform Gain Correction	
The second s	Centre Channet - 400 Window: 50	7
EM/3 VD PA HVG 001		
ENI, 5.00.1 A.110 G.001	T Temperature Contection Set Up	
	Normal C Coincidence C Anti Coinc	
	192 KHz Card V Mono	•
DNAT D120C		
PINIT R1306	Acgure Clear Data Diagnostic	
	Cancel OK Apply	
	89. 0.000	
and the second	8 8 8 8 A	
Company of the local division of the local d	2 2 2 2 8 8 2 ² 6	and the second
10000		
- 25265	41	59 Cursor at Chan 4227, the level is 84 4334
10000		

http://www.jimfitz.demon.co.uk/

http://www.jimfitz.demon.co.uk/install_nai.exe

¹³⁷Cs 661.7 keV γ-rays amplitude spectrum

Channel

Welcome to Gamma Spectacular <u>https://www.facebook.com/pages/Gamma-Spectacular/146649762066972</u>

Our gamma spectroscopy (spectrometry) systems are as good as any, and our prices start from as little \$299.- (B.Y.O. Detector). These systems are perfect for teachers and students, and anyone who want's to discover the invisible world of nuclear radiation.

GammaSpectacular.com

Pulse Recorder & Analyzer – PRA Software

Counting Rate vs Time

http://www.gammaspectacular.com/gamma_sp ectra/cs137-spectrum

http://www.youtube.com/watch?v=T-bX0OjaxQM#t=58

Product Categories

Software Downloads Videos Sample G

Sample Gamma Spectra

Links

Other Projects Old Website Forum

PRA - Gamma Spectroscopy Software Theremino MCA Geiger Bot iPhone and iPad App Safecast for iPhone & iPad BecqMoni (Japanese MCA) Intune Audio Analysis Software

The software processes the signal by calculating the RMS value of the signal and filtering out any badly formed pulses. The result is amazing!

 $\frac{1}{2}(x_1^2 + x_2^2 + \dots + x_n^2).$ $x_{\rm rms} =$

PRA is a smart software that transforms your PC sound card into a powerful multi channel analyzer for gamma spectrometry.

¹³⁷Cs 661.7 keV γ-rays amplitude spectrum

Pulse Recorder & Analyzer – PRA Software

							Edit Pulse	shape			[X]			
	Eile oct	tion View H	Time [s]				Enable	Value	Enable	Value	Settings			
	Total num	nber of pulses:	385908 Filtered pt	ulses: 385903 - A	cauisition time [s]:	600	V 1	-0.158886	⊽ 9	0.532411	Sectings			
((小)) 日本 ((小)) 日本 ((小)) 日本 ((小)) 日本 ((小)) 日本 ((小)) 日本 ((小))		F									Pulse trigger			
							2	-0.159933	I √ 10	0.365662	U.15 Sha	pe threshold	l1	Threshold [a.u
							V 3	-0.161079	▼ 11	0.166069	Je Analyse pulses	shape		
							11	0.100000	I 12	0.00000	Data acquisition lim	lits	000000	
							J¥ 4	-0.160363	,	0.030003		juisition time [s]	10300000	Number or put
							▼ 5	-0.166098	▼ 13	-0.036999	Analysed data rang	ie		
	l n			п			▼ 6	-0.152463	🔽 14	-0.087094	0 Beg	ginning [s]	89478	Duration [s]
								0.007000	E 15		- Counting rate up Tir			
/Line-in							M 1	J-0.007266	J ♥ 15	J-0.118504		.ne		
		Π					▼ 8	0.241216	🔽 16	-0.132874	Show in logarith	hmic scale	🖂 Apply dea	d time correction
SPL ND		l		lL		1					Counting rate histor	gram		
	<					>	Ap	oly	Save	Load	10 Bin	size [1/s]	20	Number of hin:
	<mark>Jh.</mark> Pulse	a height [arb	o, unit] Histogram	n							Show in logarit	hmic scale	All larger in	n last bin
EM/3.VD.PA.HVG.001	Bin: 581	Pulse height [a	arb. unit]: 35.46 Fre	quency: 2942 F	Relative frequency	[%]: 0.76					Interval histogram-			
											0.1 Bin	i size [ms]	1	S-fold
							∆t=	=300s	5		20 Nur	mber of bins		
											Show in logarit	hmic scale	All larger in	n last bin
PMT R1306											Pulse width histogra	am		
											0.02 Bin	size [ms]	0	Min [ms]
											20 Nur	mber of bins	100	Max [ms]
											J Show in logarit	hmic scale	I All larger in	n last bin
											Pulse height histogr	/am		
Nal											0.06 Bin	size [a.u.]		Min [a.u.]
10,2255											1024 Nur	mber of bins thmic scale	65 □ All larger i	Max [a.u.] a last bin
9988			۴.								Use energy cal	libration	, Ainaigeni	ridst birr
		أللادة مدة دالوالصان	in the second state of the								Energy = Height [a	.u] x 1	+ 0	[keV]
				in the state of the								Apply	Save	1
6000					and the second second second second			الألافل رادي وتتأرل يعظه	A DECEMBER AND A DECE	a law sector what				
	0	5.55	11.11 16.6	;6 22.22	27.71	33.27	38.82	44.37	49.93	55.42				
	88	💾 Tota.	🤝 NaI	📕 Win	1.CG	🌺 Fitz	<mark></mark>)ata <mark>.ih</mark> .	Edit 💧	Puls	<mark>h.</mark> Setti 🔀 Ado	. EN 🔳	🛃 🖸 🥹 🖏	() 14:10

Pulse Recorder & Analyzer – PRA Software

¹³⁷Cs 661.7 keV γ-rays amplitude spectrum

Counts

ADCM16-LTC

¹³⁷Cs 661.7 keV γ-rays amplitude spectrum

It does not matter how slow you go so long as you do not stop.

PVC

To DO:

DETECT

4 (RE

BULLSHIT AMPLIFIER / DETECTOR

TOM SCAL

NPUT FREQUENCY 950 - 2050 FEC

Inite S

FURE FOODS

ODIZED

NET WT 26 OZ (I LB 10 OZ) TI

IKCD-III

COAL

COALS

~Confucius Wisdom

www.gauraw.com

