Mass Yield Distribution in the Photon-induced Fission of ²³²Th, ²³⁸U, ^{nat}Pb, and ²⁰⁹Bi

H. Naik¹, <u>G.N. Kim</u>^{2*}, V.T. Nimje³, K.C. Mittal³, M.W. Lee², K. Kim², A. Goswami¹, M.-H. Cho⁴

¹Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
²Department of Physics, Kyungpook National University, Daegu 702-701 Republic of Korea
³Applied and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
⁴Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang
790-784, Republic of Korea

22nd International Seminar on Interaction of Neutrons with Nuclei Dubna, Russia, May 27-30, 2014

ABSTRACT

We determined the yields of fission products in the photoninduced fission for ²³²Th and ²³⁸U with the end-point energy of 10 MeV at the electron linac of Electron Beam Center in Kharghar, Navi Mumbai, India and those for ^{nat}Pb, ²⁰⁹Bi, and ²³²Th with 45-80 MeV and 2.5 GeV at Pohang Accelerator Laboratory in Pohang, Korea. The peak-to-valley (P/V) ratio, average light mass ($\langle A_I \rangle$), and heavy mass ($\langle A_H \rangle$) at different excitation energy were obtained from the mass yield data of this work and literature data. The value of P/V, $\langle A_{\rm I} \rangle$, and $\langle A_{\rm H} \rangle$ in the ²³²Th(γ , f) and ²³⁸U(γ , f) are compared with the similar data in ²³²Th(n, f), and ²³⁸U(n, f) to examine the role of excitation energy on nuclear structure effects. Similarly, the present data in the ^{nat}Pb(γ , f) and ²⁰⁹Bi (γ , f) were compared with the literature data at other bremsstrahlung energies to examine the role of excitation energy on average mass (<A>) and P/V ratio.

INTRODUCTION

- Studies on fission product yields (mass yield distribution) in the neutron- and photon-induced fission of pre-actinides (^{nat}Pb, ²⁰⁹Bi) and actinides (²³²Th, ²³⁸U) are important for their application in ADSs [1, 2] fast reactor [3] and AHWR [4].

- In ADSs, the heavy elements such as ^{nat}Pb, ²⁰⁹Bi, ²³²Th, and ²³⁸U can be used as the spallation source to produce high energy neutrons by the bombardment of high (GeV) energy proton from the accelerator.

-It is necessary to determine the yields of products in the high energy neutron/bremsstrahlung induced fission of the spallation targets and long-lived minor actinides, which are need for the design of the ADSs.

- During the spallation process high energy neutrons and photon (bremsstrahlung) produces, which can cause photo-nuclear reaction and fission of the spallation source and long-lived minor actinides.

1. Pohang Neutron Facility based on electron linac

Experiment with Bremsstrahlung at PNF

-The yields of fission products in the 45-80 MeV and 2.5 GeV (γ , f) of ^{nat}Pb, ²⁰⁹Bi and ²³²Th by off-line γ -ray spectrometric technique and using the electron linac at PAL, Pohang, South Korea [9-15].

Operation Condition of electron linac:

- Electron energy : 45, 50, 60, 70, 80 MeV, 2.5 GeV
- Beam current: ~ 15 mA
- Beam width: 1.5 µs
- Repetition rate: 3.75 Hz

Bremsstrahlung Target:

Electron Beam Line

• thin W foil (100 mm × 100 mm × 0.1 mm)

0.1mm

2. Facility in Electron Beam Center, Kharghar, Navi-Mumbai

- The yields of fission products in the 10 MeV (γ , f) of ²³²Th and²³⁸U using the electron linac at EBC, Kharghar, Navi-Mumbai, India [16].

Facility W (Ta)foil size W (Ta) thickness W(Ta) distance from exit window Sample distance From W(Ta) Electron energy Beam current Pulse width Repetition rate

EBC, India 100 cm^2 1 mm 3 cm 10 cm 10 MeV50 mA 10 µs 400 Hz

Specification of Samples for 45-80 MeV and 2.5 GeV

	Chemical Purity (%)	Weight (g)	Thickness (mm)	Size
²³² Th	99.999	0.2-0.3	0.025	0.25 cm²
^{nat} Pb	>99	12.417	0.5	25
²⁰⁹ Bi	>99	74.417	3.0	25
Al	99.99	Natural	0.025 , 0.018	

- The metal targets were wrapped with 0.025 mm thick Al foil and additionally with 0.018 mm Al foil.
- The sample was irradiated for 0.5-5 h for 45-80 MeV and 2.5 GeV. After each irradiation, the samples were cooled for 30 m to 2 h.

Specification of Samples for 10 MeV

	Chemical Purity (%)	Weight (g)	Thickness (mm)	Size
²³² Th	99.999	0.2822	0.025	2.72 cm ²
²³⁸ U	>99	0.2414		2.5 cm ²
Al	99.99	Natural	0.025, 0.018	

The metal targets were wrapped with 0.025 mm thick Al foil and additionally with 0.018 mm Al foil.

- The sample was irradiated for 4-5 h and cooled for 0.5–1.5 h.

Low-background gamma-ray spectrometry

Detection Efficiency:

c(F) =	N(E)	1
$\mathcal{E}(L_{\gamma}) =$	$I_{\gamma}(\%)$	$A_{ref}.e^{-\lambda.t_d}$

 Coaxial CANBERRA high-purity germanium (HPGe) of diameter 60.5 mm and length of 31 mm.

• The detection efficiency was 20% at 1332.5 keV relative to a 3["] diameter × 3" length NaI(Tl)

5 $)^{i}$ Fifth order polynomial fitting:

$\ln \varepsilon =$	$\sum a_i (\ln a)$	E
	<i>i</i> -0	

Nuclide	Half life (Yrs.)	No. of γ-rays	E _y (keV)	Ι _γ (%)
²⁴¹ Am	432.2	1	59.5412	35.9
¹⁵² Eu	13.537	11	121.78 244.70 344.28 411.12 443.97 778.91 867.38 964.08 1085.87 1112.07 1408.00	28.58 7.58 26.50 2.23 3.15 12.94 4.25 14.61 10.21 13.64 21.01

Typical γ-ray spectrum of fission products in the 70-MeV bremsstrahlung-induced reaction from ²³²Th

3. Data Analysis

> Determination of Average Excitation Energy :

$$\left\langle E^*(E_e)\right\rangle = \frac{\int_0^{E_e} E_e N(E_e, E_\gamma) \sigma_F(E_\gamma) dE_\gamma}{\int_0^{E_e} N(E_e, E_\gamma) \sigma_F(E_\gamma) dE_\gamma}$$

 $N(E_e, E_{\gamma})$ The number of photons with an energy E_{γ} produced from the incident electron energy E_e : using GEANT4

 $\sigma_F(E_{\gamma})$ The fission cross section as a function of the photon energy E_{γ} Using the TALYS 1.4

Ε _γ [MeV]	40	45	50	60	70	80
<e*> [MeV]</e*>	15.87	16.95	17.86	19.76	21.25	22.49

 $N(E_e, E_{\gamma})$ The number of photons with an energy E_{γ} produced from the incident electron energy E_e : using GEANT4

> Determination of Yields for Fission Products

• From the observed number of γ -rays (N_{obs}) under the photo-peak of each individual fission product, their **cumulative yields** (Y_R) relative to ¹³⁵I were determined by :

$$N_{obs}(CL/LT) = n\sigma_F(E)\Phi I_{\gamma} \varepsilon Y_R (1 - e^{-\lambda t_{irr}}) e^{-\lambda t_{cool}} (1 - e^{-\lambda CL})/\lambda$$

where *n* is the number of target atoms $\sigma_F(E)$ is the photo-fission cross-section of the target nuclei and $\Phi = \int_{E_r}^{E_e} \phi \, dE$ is the integrated photon flux from the reaction threshold (E_b) to the end-point energy (E_e) for the photon flux (ϕ) at the photon energy *E*. The t_{irr} and t_{cool} are the irradiation and the cooling time, and *CL* and *LT* are the real and the live times of counting, respectively. λ is the decay constant of the isotope of interest and ε is the detection efficiency of the γ -rays in the detector system. I_{γ} is the abundance or the branching intensity of the chosen γ -rays of the reaction products.

• From the relative cumulative yields (Y_R) of the fission products, their relative masschain yields (Y_A) were determined by :

$$Y_{A} = Y_{R} / FCY, \quad FCY = \frac{EOF^{a(Z)}}{\sqrt{2\pi\sigma_{z}^{2}}} \int_{-\infty}^{Z+0.5} \exp\left[-(Z-Z_{P})^{2} / 2\sigma_{z}^{2}\right] dZ$$

where FCY is the fractional cumulative yield, Z_P is the most probable charge and σ_z is the width parameter of an isobaric yield distribution. $EOF^{a(Z)}$ is the even-odd effect with a(Z) = +1 for even Z nuclides and -1 for odd-Z nuclides.

4. Result and Discussion Yields of Fission Products (%) as a function of mass number in the γ-induced fission of ^{nat}Pb and ²⁰⁹Bi.

Yields of Fission Products (%) as a function of mass number in the γ-induced fission of ²³²Th and ²³⁸U

The Fission Yield distribution in 232 Th(γ , f) reaction is triple humped, whereas that in the 238 U(γ , f) reaction is double humped. This is due to the different type of potential energy surface in 232 Th^{*} compared to 238 U^{*}, which is called as **the Th anomaly**

Average values of heavy mass ($<A_H>$) and light mass ($<A_L>$) as a function of excitation energy in the ²³²Th(γ ,f) and ²³²Th(n,f) reactions as well as in the ²³⁸U(γ ,f) and ²³⁸U(n,f) reactions.

$$\langle A_L \rangle = \sum (Y_A A_L) / \sum Y_A, \quad \langle A_H \rangle = \sum (Y_A A_H) / \sum Y_A,$$

Fission Yields (%) of symmetric and asymmetric fission products in the 232 Th(γ ,f) and 232 Th(n,f) reactions and in the 238 U(γ ,f) and 238 U(n,f) reactions.

Fission yields of asymmetric products decrease slightly, whereas those of symmetric products increase significantly with excitation energy

Peak-to-valley (P/V) ratio as a function of excitation energy in the 232 Th(γ ,f) and 232 Th(n,f) reactions and in the 238 U(γ ,f) and 238 U(n,f) reactions.

At all excitation energy, the P/V ratio in 232 Th(γ , f) and 232 Th(n, f) reactions are lower than in the 238 U(γ , f) and 238 U(n, f) reactions. This is due to the third peak in the former than later.

Summary for Yield Distribution of Fission Products

- (i).The mass yield distribution in the bremsstrahlung induced fission of pre-actinides (^{nat}Pb&²⁰⁹Bi) is symmetric and for pre-actinide (²³⁸U) is asymmetric with double humped, whereas for ²³²Th, it is asymmetric with triple humped.
- (ii).The higher yields of fission products for A=133-135, 138-140, 143-145 and their complementary products even at the bremsstrahlung energies of 10-80 MeV indicate the effect of nuclear structure. There is no such effect for pre-actinides.
- (iii).For ^{nat}Pb(γ , f) and ²⁰⁹Bi (γ , f) the FWHM of the mass yield distribution increases and $\langle A_L \rangle$ decreases with E*. For ²³²Th(γ , f), ²³²Th(n, f) and ²³⁸U(n, f), the $\langle A_H \rangle$ decreases with E*, whereas in²³⁸U(γ , f), it is constant with E*.
- (iv).The P/V ratio in the 232 Th(γ , f), 232 Th(n, f), 238 U(γ , f) and 238 U(n, f), decrease with increase of E*. However the decrease trend is very sharp at the lower E* for 232 Th(γ , f).