THE NEXT-GENERATION PRACTICAL MODEL OF THE CASCADE GAMMA DECAY OF **NEUTRON RESONANCE** AND ITS EXPECTED PARAMETERS FOR AN ARBITRARY NUCLEUS

A. M. Sukhovoj, L. V. Mitsyna

Used research methods

- a) measurement of the spectra of evaporated nucleons and
- b) full spectra of gamma transitions emitted by the nucleus with varied excitation energies

In both methods p and **Γ** are unknown values connected by the equation:

The main source of a systematical error

The data analysis of both such experiments can not be performed in an accordance with the mathematical requirements for the equations solving, even in principle.

Two-step process:

 $I_{\gamma\gamma}(E_1) = I_1 I_2 = \sum_{\lambda, f} \sum_{i} \frac{\Gamma_{\lambda i}}{\Gamma_{\lambda}} \frac{\Gamma_{if}}{\Gamma_i} = \sum_{\lambda, f} \frac{\Gamma_{\lambda i}}{\Gamma_{\lambda i}} \frac{\Gamma_{if}}{-\Gamma_{\lambda i}} = \sum_{\lambda, f} \frac{\Gamma_{\lambda i}}{-\Gamma_{\lambda i}} \frac{\Gamma_{if}}{-\Gamma_{\lambda i}} \frac{\Gamma_{if}}{-\Gamma_{if}} = \sum_{i} \frac{\Gamma_{if}}{-\Gamma_{ii}} \frac{\Gamma_{if}}{-\Gamma_{ii}} \frac{\Gamma_{if}}{-\Gamma_{ii}} = \sum_{i} \frac{\Gamma_{ii}}{-\Gamma_{ii}} \frac{\Gamma_{ii}}{$

Spectra $h\gamma\gamma$ =F(E_1) as a function of their energy E_1 are actually rolling up the data of two independent experiments:

- the spectrum of the primary transitions of λ resonance decay to the all possible intermediate levels (*i*)
- \circ and the branching ratios *Br* for the secondary transition at the final cascade levels (*f*).

The development of the methodology for measuring the intensity of these cascades and for their analysis is the only way to determine the maximum valid ρ and Γ values.

And it will allow the obtaining the unique possibilities for systematic studies of the nucleus superfluidity.

Possibility of the future experiments:

$I_2 \propto \Gamma / \sum (\rho \Gamma)$

The second factor is the branching factor B_r . It can be determined in case of $I_{\gamma\gamma} \approx 100\%$ from the relation $B_r = I_{\gamma\gamma} / I_1$

The level density **p** and the strength function **K** of the radiative widths in principle can be defined from the experiment without using any theoretical nuclear models.

This is not contradict mathematics.

Grounds of the new model

• The Texp $\rho exp = Tom \rho es$ relation has resulted from the form of the spectrum of evaporated nucleons (T=2 $\pi\Gamma/D_{\lambda}$)

$$k_{\rm mod} = \Gamma / (E_{\gamma}^3 A^{2/3} D_{\lambda})$$

 Kexp=kmod pmod/pexp is the interpolation in case of γ-ray emission The model level density $\rho_n = \frac{(2J+1)\exp(-(j+1/2)^2/2\sigma^2)}{2\sqrt{(2\pi)\sigma^3}}\Omega_n(U)$

$$\Omega_n(U) = \frac{g^n (U - E_n)^{n-1}}{((n/2)!)^2 (n-1)!}$$

$$C_{coll} = A_l \exp(\sqrt{(E_{ex} - U_l)/E_{v} - (E_{ex} - U_l)/E_{\mu}}) + \beta$$

$$\rho_{\rm exp} = C_{coll} \rho_n$$

The model for E1-radiation widths (analogous function – for M1-transitions)

$$k(E1, E_{\gamma}) = w \frac{1}{3\pi^2 \hbar^2 c^2 A^{2/3}} \frac{0.7\sigma_G \Gamma_G^2 (E_{\gamma}^2 + \kappa 4\pi^2 T^2)}{E_G (E_{\gamma}^2 - E_G^2)^2} + \frac{1}{2\pi^2 \hbar^2 c^2 A^{2/3}} \frac{1}{2\pi^2 \hbar^2 c^2$$

 $+P\exp(\alpha(E_{\gamma}-E_{p}))+P\exp(\beta(E_{p}-E_{\gamma})).$

$$T = \sqrt{\kappa U / a}$$

$$w = \Gamma_{\gamma}^{\exp} / \Gamma_{\gamma}^{cal}$$

The special cases are also available in the fits:

- Fermi-gas level density $-C_{coll} = 1$
- Strength function Kadmenskij S.G., Markushev V.P., Furman W.I. model,
 - i.e. P=0 and $\kappa=1$.

E1, MeV

E₁, MeV

Specific of any experiment

- For all methods of ρ and Γ determination the variations of the spectra δS and of the parameters δρ and δΓ are connected by equation:
 δS ≈(dS/dp) δρ and δS ≈(dS/dΓ) δ Γ.
- All derivations dS/dp and dS/dΓ here are much less than 1, strongly correlate and depend on excitation energy.
- These values are maximal for registration by the cascade method. As a result, the method provides the minimal errors for ρ and Γ determination.

E₁, MeV

The best fits for the value of the cascade primary gamma-transition energy *L* in the point of equality of the fitting strength functions and ones from [KMF] model

The best ratios of the fitting radiative strength functions to the sum of these functions from [KMF] model for $E_1=1$ MeV.

Position of U₄-B_n threshold value for the forth pair breaking relative to the mass number of nucleus

Dependence of the thresholds for the second U_2 (black points) and the third U_3 (red open points) Cooper pairs breaking on the nuclear mass *A*. The data of U_2 and U_3 are explored together.

The binding energy for the last neutron for even-even (full circles), even-odd (half open points) and odd-odd (open points) compound nuclei of masses *A*.

Average parameters of Cooper pairs breaking U/δ_0 for the nuclei with even-even (e-e), even-odd (e-o) and oddodd (o-o) nucleons parities

	Odd-odd nuclei	Even-odd nuclei	Even-even nuclei
Pair number	Average breaking threshold energies for Cooper pairs of		
	nucleons		
2	1.78(68)	2.81(116)	2.71(80)
3	3.27(67)	4.30(118)	4.67(75)
4	5.32(98)	6.41(84)	7.72(55)
Pair number	Averaged coefficient of collective enhancement A_l		
2	30(36)	115(193)	32(52)
3	43(61)	75(84)	88(118)
4	32(34)	86(98)	123(234)
Parameters of vibrational levels contribution			
E _u	1.02(13)	0.89(32)	1.02(19)
Ė,	0.99(5)	0.99(13)	0.99(5)
Relative part of level density with negative parity of levels			
$P(E_{ex}=E_d)$	0.42(22)	0.32(34)	0.40(32)
$\overline{Q(E_{ex}=B_n)}$	0.54(50)	0.34(50)	0.24(38)

The best fits of E_{μ} and E_{ν} parameters (of phenomenological coefficient C_{coll}) as a function of the nuclear mass

Thank you for your attention