ANISOTROPY OF THE FISSION FRAGMENTS FROM NEUTRON-INDUCED FISSION IN INTERMEDIATE ENERGY RANGE 1- 200 MEV

<u>A.M. Gagarski</u>, A.S. Vorobyev, O.A. Shcherbakov, L.A. Vaishnene

Petersburg Nuclear Physics Institute of NRC "Kurchatov Institute", Gatchina, Russia

Introduction

²³²Th(n,f) Androsenko et al. (1969)

$$W_{M,K}^{J}(\theta) = \frac{2J+1}{2} |d_{M,K}^{J}|^{2}$$

$$E_{rot} = \frac{\hbar^{2} [J(J+1) - K^{2}]}{2J_{\perp}} + \frac{\hbar^{2} K^{2}}{2J_{\parallel}}$$
For low excitation energies
we need a proper sum
over uniformly distributed
 M , and few available J, K
(fission channels).

$$W(\theta) \sim \sum_{n_{even}} A_{n} P_{n}(\cos \theta)$$

At high excitations with many opened fission channels one can use statistical model for the *K* projection distribution – $\rho(K)$:

$$\rho(K) \sim \exp\left(-\frac{E_{rot}}{T}\right) \quad K_0^2 = \frac{J_{eff}T}{\hbar^2}$$

$$J_{eff} = \frac{J_\perp J_\parallel}{J_\perp - J_\parallel} \quad T = \sqrt{E^*/a_f}$$

$$\rho(K) \sim \exp\left(-\frac{K^2}{2K_0^2}\right)$$

In transition state statistical model:

 $W(\theta) \sim 1 + A\cos^2 \theta$ $\frac{W(0^o)}{W(90^o)} = A + 1 \approx \frac{\langle J^2 \rangle}{4K_0^2} + 1$

Introduction

- The experimental study of angular distributions of fission fragments is a way to determine the properties of transition states of a fissioning nucleus at the saddle point.
- It is important for understanding of the key characteristics and dynamics of the fission process.
- The angular distributions data are also important for precise measurements of the fission cross-sections, since it should be taken into account as efficiency correction for non 4π detectors.

Neutron TOF-spectrometer GNEIS

Main parameters:

$$\begin{split} E_p &= 1 \text{ GeV}; \quad \Delta t \approx 10 \text{ ns}; \\ f &\approx 50 \text{ Hz}; \quad \Phi \sim 3 \times 10^{14} \frac{\text{n}}{\text{s}}; \\ L &= 35.5 \text{ m} \end{split} \qquad \qquad \frac{\Delta E}{E} (1 \text{ MeV}) \approx 1\% \text{ ; } \frac{\Delta E}{E} (200 \text{ MeV}) \approx 12\% \end{split}$$

Neutron TOF-spectrometer GNEIS

Neutron spectrum of GNEIS, energy range: from thermal to 1GeV

Pb – neutron resonance dips and γ -flash peak

Experimental setup

Experimental setup

Neutron beam profile

Cos θ Monte-Carlo simulation with real geometry

Monte-Carlo simulation with real detectors geometry and wires thickness. Total efficiency ~62%

Results (examples of $\cos \theta$ fits)

Results (anisotropy in 232Th)

Results (anisotropy in 235U)

Results (anisotropy in 238U)

Results (anisotropies in linear scale)

Results (Linear Momentum Transfer)

Conclusion

- Measurements of the fission fragment angular distributions have been done for ²³⁵U, ²³⁸U and ²³²Th in intermediate neutron energy range 1-200 MeV using TOF-technique. Low pressure position sensitive multiwire proportional counters (MWPC) were used for fission fragment registration.
- Anisotropy of fission fragments has been obtained from the measured angular distributions with an accuracy comparable with that of previous experiments in energy range 1-15 MeV and improved accuracy at higher energies up to 200 MeV.
- At present the data obtained at the GNEIS for ²³⁵U and ²³⁸U are the most accurate data.
- The new experimental data on linear momentum transfer obtained from our measurements provide information necessary for improvement of theory of fission at intermediate energies.
- The next stage of the investigation of fission fragment angular distributions at the GNEIS will be the measurements with other isotopes and theoretical analysis of the experimental data.

Thank you for attention

References (232Th)

- 1) 1979, S.Ahmad #30520002
 - J,NSE,71,208,197908) #Jour: Nuclear Science and
- Engineering, Vol.71, p.208 (1979), USA
- 2) 1982, Kh.D.Androsenko #40825004
 - J,YK,1982,(2/46),9,1982) #Jour: Vop. At.Nauki i Tekhn.,Ser.Yadernye Konstanty,
 - Vol.1982, Issue.2/46, p.9 (1982), Russia
- 3) 1965, R.B. Leachman

R.B. Leachman and L. Blumberg, "Fragment anisotropy in neutron, deuteron, and alpha-particle-induced fission" Phys. Rev. 137 (1965) B814.

- 4) 1966, V.G.Nesterov #40366003
 - J,YF,4,(5),993,6611 #Jour: Yadernaya Fizika, Vol.4, Issue.5, p.993 (1966), Russia
- 5) 1960, J.E. Simmons
 - J.E. Simmons and R.L. Henkel, "Angular distribution of fragments in fission induced by MeV neutrons", Phys. Rev. 120 (1960) 198.
- 6) 1982, J.W.Meadows #12798002,12798003 C,82ANTWER,,740,8209 #Conf: Conf.on Nucl.Data for Sci.and Technol.,Antwerp 1982, p.740 (1982), Belgium
- 7) CERN-Thesis-2005-079_Paradela
- 8) CERN-Thesis-2013-254_Leong

References (235U)

- 1) 2014, D.Tarrio #23209006
 - J,NIM/A,743,79,2014 #Jour: Nucl. Instrum. Methods in Physics Res., Sect.A,
 - Vol.743, p.79 (2014), Netherlands
- 2) CERN-Thesis-2013-254_Leong
- 3) 1982, Kh.D.Androsenko #40825002
 - J,YK,1982,(2/46),9,1982) #Jour: Vop. At.Nauki i Tekhn.,
 - Ser.Yadernye Konstanty, Vol.1982, Issue.2/46, p.9 (1982), Russia
- 4) 2005, I.V.Ryzhov #22898003
 - J,NP/A,760,19,2005 #Jour: Nuclear Physics, Section A,
 - Vol.760, p.19 (2005), Netherlands
- 5) 1956, R.L.Henkel #13709003 J,PR,103,1292,195609
- #Jour: Physical Review, Vol.103, p.1292 (1956), USA
- 6) 1965, R.B. Leachman
 - R.B. Leachman and L. Blumberg, "Fragment anisotropy in neutron, deuteron, and alpha-particle-induced fission" Phys. Rev. 137 (1965) B814.
- 7) 1977, J.Caruana #30455002
 - J,NP/A,285,205,197707 #Jour: Nuclear Physics, Section A,
 - Vol.285, p.205 (1977), Netherlands
- 8) 1970, S.B.Ermagambetov #40014002
 - J,YF,11,(6),1164,197006) #Jour: Yadernaya Fizika, Vol.11,
 - Issue.6, p.1164 (1970), Russia

References (238U)

- 1) 1956, R.L.Henkel #13709003 J,PR,103,1292,195609 #Jour: Physical Review, Vol.103, p.1292 (1956), USA
- 2) 2009, E.Birgersson #23054003
 J,NP/A,817,1,2009 #Jour: Nuclear Physics, Section A, Vol.817, p.1 (2009), Netherlands
- 3) 1982, Kh.D.Androsenko #40825005
 J,YK,1982,(2/46),9,1982 #Jour: Vop. At.Nauki i Tekhn., Ser.Yadernye Konstanty, Vol.1982, Issue.2/46, p.9 (1982), Russia
- 4) 2005, I.V.Ryzhov #22898003
 - J,NP/A,760,19,2005 #Jour: Nuclear Physics, Section A,
 - Vol.760, p.19 (2005), Netherlands
- 5) 1960, J.E. Simmons

J.E. Simmons and R.L. Henkel, "Angular distribution of fragments in fission induced by MeV neutrons", Phys. Rev. 120 (1960) 198.

- 6) 1989, D.L.Shpak #41041002 J,YF,50,(4),922,8910) #Jour: Yadernaya Fizika,
 - Vol.50, Issue.4, p.922 (1989), Russia
- 7) 2000, F.Vives #22402003
 - J,NP/A,662,(1),63,2000) #Jour: Nuclear Physics, Section A, Vol.662, Issue.1, p.63 (2000), Netherlands
- 8) 1965, R.B. Leachman

R.B. Leachman and L. Blumberg, "Fragment anisotropy in neutron, deuteron, and alpha-particle-induced fission"
Phys. Rev. 137 (1965) B814.
9) CERN-Thesis-2005-079_Paradela