A powerful UCN source at an external beam of thermal neutrons at the PIK reactor

<u>E.V. Lychagin¹</u>, V.A. Mityukhlyaev², A.Yu. Muzychka¹, G.V. Nekhaev¹, V.V. Nesvizhevsky³, M.S. Onegin², E.I. Sharapov¹ and A.V. Strelkov¹

¹ Joint Institute for Nuclear Research, Dubna, Russia
 ²NRC KI Petersburg Nuclear Physics Institute, Gatchina, Russia
 ² Institut Max von Laue – Paul Langevin, Grenoble, France

1. SUPER-TERMAL SOURSES OF ULTRACOLD NEUTRONS R.Golub and J.M. Pendlebury. *PHYSIC LETTERS V53 A, 1975.*

Optimistic:

ILL: $L_{min} - 5m$; d – up to 20 cm; $J_0 \sim 10^{15} n/sm^2/s$; $J \sim 10^{11} n/cm^2/s$; $F \sim 4.10^{13} n/s$ PIK: $L_{min} - 3m$; d – up to 30 cm; $J_0 \sim 10^{15} n/sm^2/s$; $J \sim 8.10^{11} n/cm^2/s$; $F \sim 5.10^{14} n/s$

Realistic:

ILL: $L_{min} - 5m$; d -15 cm; $J_0 \sim 10^{15} n/sm^2/s$; J~6·10¹⁰n/cm²/s; F~10¹³ n/s PIK: $L_{min} - 3m$; d -20 cm; $J_0 \sim 10^{15} n/sm^2/s$; J~4×10¹¹n/cm²/s; F~10¹⁴ n/s 5

Methane

molecular crystal with a very round molecule

Methane

Solid CH₄: Coherent scattering in one molecule and incoherent scattering on different molecules.

MCNP 4c with special kernel (solid CH₄)

MCNP 4c with special kernel (solid CH₄)

MCNP 4c with special kernel (solid CH₄)

Evaluation parameters of the source

Size is very important !

Power ~10⁷ UCN/s **Up to d**⁵

Radiative heating

 External radiative heating: γ-rays+fast neutrons from the reactor
 Internal radiative heating: capture of thermal neutrons in the source

> Limitations: Q ~ 1 – 2 W

Geometry for simulations:

Geometry for simulations:

Geometry for simulations:

External radiative heating

```
Simulations d=20cm; D=40cm; J=3.66 n/sm<sup>2</sup>/s;
 Be vessel (h=1.5 mm):
        Q = 3.67 W (He<sub>4</sub>>90% \gamma-rays >90%)
                \Rightarrow \gamma-filter
         10 cm Bi: Q<0.2W
Thermal neutron
                    Polycristal Bi ~ 10%
transmission:
                    Perfect single crystal Bi (300K) ~ 50%
                    Perfect single crystal Bi (80K) ~ 80%
                    Real single crystal Bi (80K) ~ 60%
```

Internal radiative heating

Substances for the source: min σ_{abs} and max E_b Al: σ_{abs} = 0.233b β -decay ~2 Mev/n Zr: σ_{abs} = 0.185b Be: σ_{abs} = 0.0076b C: σ_{abs} = 0.0035b - pyrolytic graphite

Coatings: Be: $E_b(v_b) = 250 \text{ neV}$ (6.9 m/s)

diamond: $E_b(v_b)$ = 300 neV (7.6 m/s) DLC (sp³-70%): $E_b(v_b)$ = 270 neV (7.2 m/s) DLC (sp³-45%): $E_b(v_b)$ = 250 neV (6.9 m/s)

Internal radiative heating

Geometry for simulations:

J=3.66*10¹¹ n/cm²/sec

Internal radiative heating Simulations (Without Bi-filter)

UCN source ϕ 40 cm; neutronguide ϕ 20 cm; J=3.66*10¹¹n/cm²/s

20

UCN source with solid CH_4 moderator (h(CH_4) = 2 cm)

d=20 cm; D=40cm, Be, Bi-filter:

Thermal neutrons:

power – 6-10⁶ n/s; density - 6-10⁴ n/cm³; Q – 0.7 W

Cold neutrons:

power – 2-10⁷ n/s ; density – 1.7-10⁵ n/cm³; Q – 1.2W

d=25 cm; D=50cm; Be, Bi-filter: :

Thermal neutrons:

power – 1.8-10⁷ n/s ; density – 1-10⁵ n/cm³; Q – 1.8 W

Cold neutrons:

power – 5.10^7 n/s ; density – 3.10^5 n/cm³; Q – 3.1W

Liquid deuterium 19K

coherent scattering → optical potential

MCNP 4c with special kernels (solid CH₄ and liquid D₂)

23

Simulations (Without Bi-filter)

MCNP 4c with special kernels (solid CH₄ and liquid D₂)

MCNP 4c with special kernels (solid CH_4 and liquid D_2)

D = 60cm

 D_2 : 19K, CH₄ 4K, h=3 cm . Entrance hole ϕ 30 cm, J = 8*10¹¹ n/sm²/s

UCN source with solid D_2 moderator (h(D_2) = 50 cm), Bi-filter.

d=30 cm; D=60cm:

Thermal neutrons: power – 7-10⁷ n/s ; density – 1.5-10⁵ n/cm³; Q – 1.5 W

Cold neutrons: power – 2-10⁸ n/s ; density – 5-10⁵ n/cm³; Q – 2.1 W

UCNS on the extracted beam of the PIK reactor

UCN density $\sim 10^5$ cm⁻³ UCNS flux $\sim 10^7$ c⁻¹