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Preparation for fundamental interactions research
at PIK reactor was started at WWR-M reactor
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The general scheme of a complex of experimental installations for carrying
out research of fundamental interactions at GEK 4-4’ channel
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Scheme of placement of horizontal channels of PIK
reactor. In the channel GEK-4-4' the source of cold
neutrons is located.




The general scheme of a complex of experimental installations for carrying out
research of fundamental interactions at PIK reactor
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A vertical outlay of the channel GEK-4-4": 1 — a source of cold neutrons, 2 — UCN source on superfluid He is located on the
output beam of cold neutrons, 3 — uncooling bismuth filters comprising valve devices of channels, 4 — EDM spectrometer, 5 —
a gravitational trap for measuring a neutron lifetime, 6 — a chopper of cold neutrons beam, 7 — a polarizer of neutron beam on
polarized 3He, 8 — an installation for measuring asymmetry of a neutron decay with a superconducting solenoid, 9 — a

polarization analyzer, 10 — a detector, 11 — He refrigeration unit for a cold neutron source, 12 — a liquid deuterium capacitor for
a cold neutron source.
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The general scheme of a complex of experimental installations for
carrying out research of fundamental interactions with UCN at PIK reactor
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A layout of UCN source with superfluid He and experimental installations on channels GEK-3 and GEK-4 of the
reactor PIC: UCN1 — UCN source on channel GEK-4, UCN2 — UCN source on channel GEK-3, EDM — installation
for measuring a neutron EDM, GT — installation for measuring a neutron lifetime with UCN gravitational trap, MT —
an installation for measuring a neutron lifetime with UCN magnetic trap.



MC calculation of UCN density in UCN source and EDM spectrometer

UCN density
in EDM spectrometer
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Use of the polycrystalline bismuthic filter Heat load in UCN source with filter and

for UCN source with superfluid helium without filter ( )
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Cryogenic complex at WWR-M reactor

Vacuum
equipment

Compressors Receivers,

Cryostat cryogenic building



The full-scale technological model of UCN source with superfluid helium is mounted




The full-scale technological model of UCN source with superfluid helium is mounted

Liquefier Cryostat Refrigerator



General view of scientific station of UCN source at PIK reactor

Due to application of polycrystalline bismuth filter, it has become possible to solve the problem
of reducing a heat load towards superfluid He up to the level of 0.5 W. In this connection, a
project for a technological complex has been elaborated to remove heat load of 1 W at

temperature 1 K from superfluid He for UCN source at PIK reactor.
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Neutron EDM




Search for neutron EDM

One of the most significant problems in physics is the time invariance
violation primarily concerned with the origin of the Universe.
Experiments on search for neutron electric dipole moment, other than
zero, are regarded as a time invariance violation test, while an ultracold
neutron method provides a very high estimation accuracy.

In 1967 A.D. Saharov, for the first time, claimed that for interpretation of
baryon asymmetry of the Universe, it was necessary to assume that there
was an interaction, firstly, non conserving a baryon number and, secondly,
violating CP-invariance.



MSSM Baryogenesis: EDMs & LHC

2007 NSAC
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Search for neutron EDM

¥

PNPI NRC KI setup for neutron EDM measurement at ILL

OUR current result /nEDM / <hH5. 10_26 e.cm 90% CL



New scheme of UCN trap in EDM spectrometer

Expected factor UCN transmission intensity is about 2 - 3 times
K=X

New scheme

Old scheme |




Assembling of new scheme of EDM spectrometer

April - May 2015



Preparation of measurement of neutron EDM with the modified installation on
more intensive position for the purpose of increase in accuracy by 2-3 times




History of nEDM measurements. Results and prospects
of PNPI-ILL-PTI collaboration
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History of measurement of neutron EDM
and plans of increase in accuracy at ILL and

at PIK reactor
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-20 icti .
10 1 1 1 1 1 1 1 1 1 1 1 1 PredICtlon
: - Electromagnetic
e 10-21'9 o MIT-BNL | g
O 4 v ORNL-Harvard
° v e ORNL-ILL
e -22 \
= 1074 m |LL-Sussex-RAL .
= M A PNPI
£ 107 v _
z
© 107- A . 1 - Weinberg Multi-Higs
1 s -~_  Present limit of PNPI-ILL-PTI d g
() N
s 107 N \A ]
a T e m - Minimal SUSY
c 104 Present limit of RAL/Sussex -
£ Estimation of future limit — ® -
> - Left-Right Symm.
() 27 of PNPI-ILL-PTI at PF2 EDM
z 104 @ A
Estimation of future limit —
10_23 of PNPI at PIK

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030
Year



Neutron B-decay




Matrix element V , determination from neutron B-decay

Neutron lifetime measurement by method of UCN storage
in material and magnetic traps.
B-decay asymmetries measurement ( A — electron, B — neutrino).

CKM mixing matrix: ft(l+A )(1+8 ) K
, V| G2(1+317)
d) (V, V., V,)(d 5% 24% |V
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Neutron decay and cosmology
G. J. Mathews, T. Kajino, T. Shima, Phys. Rev. D 71, 021302(R) (2005)
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Gravitrap experiment
A.Serebrov et al., Phys Lett B 605, (2005) 72-78: 878.5+0.8s

2002-2004 (PNPI JINR ILL) ILL reactor, Grenoble




Scheme of Big Gravitational Trap
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1 — external vacuum vessel; 2 — internal vacuum vessel; 3 — platform for
service; 4 — gear for pumping out internal vessel; 5 — trap with insert in low
position; 6 — neutron guide system; 7 — system of coating of trap and insert;
8 — detector; 9 — mechanism for turning trap; 10 — mechanism for turning

insert



Installation of Big Gravitrap on ILL reactor (August 2014)
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Cleaning of Cu Trap and

| BN T Gy

?*i - coating by Fomblin grease
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Cu Trap coated by Fomblin grease




Fomblin grease lifetime, s

Storage time in the trap with Fomblin grease coating
(storage time is 16000 s at liquid nitrogen temperature
or loss probability is 5% of neutron decay probability)

Temperature dependance of Fomblin grease coating
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Neutron lifetime measurement by method of UCN storage in magnetic trap
(V.F.Ezhov talk)

The first stage of measurements of neutron lifetime with use of prototype
magnetic trap (left); the vacuum camera with model of a magnetic trap
inside (right)
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Research of neutron f-decay
at GEK-4" beam
of cold neutrons at PIK reactor




Complex research of neutron B-decay at GEK-4" beam
of cold neutrons at PIK reactor
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6 — chopper of cold neutrons beam, 7 — polarizer of neutron beam on polarized
3He, 8 — installation for measuring asymmetry of a neutron decay with a
superconducting solenoid, 9 — polarization analyzer, 10 — detector



Scheme of experiment with superconducting solenoid

Solenoid with a magnetic mirror

An experimental scheme for measuring an electron asymmetry of a neutron decay. The neutron
beam is polarized with He-3 polarized cells, it passes through a flipper and after a collimator gets into
the field of decay, restricted by an electrode. All the protons are pulled out of the neutron field of decay
by an electric field and get onto the detector (5). Electrons move onto the detector (4). 1 —a
superconducting solenoid with a magnetic mirror, 2 — a cylindrical electrode, 3 — a metal yoke, 4 — an
electron detector, 5 — a proton detector.

In decay region B, ~0.35T @ 1 KA

In magnetic mirror region B,~08T @ 1 KA



Creation of setup for measurement of neutron decay asymmetries.
(Superconducting solenoid, cryostat of superconducting solenoid.)

Filling of liquid helium in the cryostat is made



Asymmetries measurement in neutron f-decay.
Scheme of the experiment

Neutrons velocity = 600 m/s

- . :""_"‘ = ~600 M/c
nEN s

Effective length of decay region =2 m

1 — a velocity selector, 2 - 3He polarizer, 3 — a beam chopper, 4 — a spin-flipper, 5 — a thin
neutron detector, 6 — an electron detector, 7 — an electron detector, 8 — a proton detector,
9 — a neutron detector, 10 —a beam polarization analyzer

Count is kept on the electron detector (6). The proton detector (8) is used in regime of
delayed coincidences. The electron detector (7) is used in mode of anticoincidence.
Detectors of neutrons (5) and (9) are used for control of bunch speed.



A scheme of division of electrons and protons
in crossed electric and magnetic fields

The electron and proton detecior
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Electron-spin asymmetry A measurement.
Simulation of the experiment.
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Neutrino asymmetry B measurement

Normalized time-of-flight proton spectrum

Proton Count Rate for various distances to detector 7
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Calculation of neutrino asymmetry B

Simulation of measurement of B at Electron Energy 300 keV
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Search for reactor antineutrino

oscillations at short distances
sterile neutrino
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Ratio of Observed To Predicted Reactor-v’s

G. Mention et al., Phys. Rev. D83, 073006, 2011

The reactor antineutrino anomaly and sterile neutrino

The Reactor Anomaly

= Observed/predicted averaged event ratio: R=0.927x0.023 (3.0 0)
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Prototype of antineutrino detector at WWR-M reactor
Liquid scintillator BC-525(Gd) Detector with active shielding 4n

Filling by liquid scitillator installation of model inside of
400 liters passive shielding



Neutrino channel outside and inside

Passive shielding of 60 tons Range of measurements for the reactor
antineutrino flux is 6 - 12 meters from

the active reactor core






(observed - fitted)/fitted

First measurements of 1/R*dependence at the short distances with prototype
of NEUTRINO-4 detector
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NEUTRINO-4 experiment for sterile neutrino search at _Pessiveshielding 60
SM-3 reactor and development of installation of ' |

neutrino monitoring for PIK reactor
PNPI NRC KI (Gatchina), NRC KI (Moscow), RIAR(Dimitrovgrad)

PIK reactor SM-3 reactor |t D

H —T 1T 1 Neutrino laboratory is created
at SM-3 reactor to search for
sterile neutrino. Region of
measurements of reactor
antineutrino flux is 6-12 m from
reactor core.
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Neutrino channel outside and inside view
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Serebrov (PNPI, Gatchina, Russia)



Scheme of location of antineutrino detector at PIK reactor
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1.3 m?3

Active
shielding from
liqguid
scintillator
+ PMT

Production of the full-scale - =
NEUTRINO-4 detector yél
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Sensitivity increasing is one order of
magnitude with respect to model

Serebrov (PNPI, Gatchina, Russia)
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Designing and
production of the full-scale
detector NEUTRINO-4

3 m? of liquid scintillator, 74 PMT

————— i

We obtained 3 m? of liquid scintillater from China



Possible area of sensitivity of
NEUTRINO-4 experiment
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CONCLUSION Neutron EDM  Neutron f-decay

NEUTRINO -4

e Cold
Neutron
Source

Superfiuid helium

Bismuth filter
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Beam of polarized cold neutrons

v =~600 mi/c
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