The NPDGamma Experiment: Parity Violation in Neutron-Proton Capture

Matthew Musgrave University of Sussex For the NPDGamma Collaboration

Hadronic Parity Violation

- Weak nucleon-nucleon couplings are largely unknown
- Natural scale of 10⁻⁷ set by relative strength of the weak and strong forces

The meson exchange model* interprets the NN interactions via the exchange of light mesons.

*Desplanques, Donoghue, Holstein, Annals of Physics 124, 449 (1980)

The NPDGamma Observable

Hadronic weak interaction

Parity violating gamma ray asymmetry

Theoretical Predictions

The Spallation Neutron Source

The NPDGamma Apparatus

Supermirror Polarizer

Average Polarization: ~0.95±0.005

RF Spin Flipper

ISINN-23

Para-Hydrogen Target

Para-Hydrogen Cross Section

Unintentionally made the world's best measurement of the para-hydrogen cross section!

Csl Gamma Ray Detectors

- 4 rings of 12 detectors
- 3π acceptance
- 95% detector efficiency
- Current mode detection
 5x10⁷ gammas per pulse

RF Spin Flipper

Para-H₂ Target

³⁵Cl Asymmetry

- ³⁵Cl has a large known PV asymmetry
- ³⁵Cl is used to calibrate the positions of the 48 Csl detectors
- Asymmetry result is in agreement with previous measurements
- More data is being analysed

Detector Signals

Matthew Musgrave

ISINN-23

²⁷Al Asymmetry

Aluminium

- Dominate systematic effect
- ~20% of gamma signal
- Needs to be measured to 3x10⁻⁸

$$Pretiminally = -18.0 \pm 7.1(\text{stat}) \pm 0.2(\text{sys}) \times 10^{-8}$$
$$A_{\text{lr,PC}} = -6.80 \pm 7.1(\text{stat}) \pm 0.2(\text{sys}) \times 10^{-8}$$

More data is being analysed

H₂ Asymmetry Uncertainties

Systematic Effects which may cause false Asym	Size
Additive Asymmetry (instrumental)	< 1x10 ⁻⁹
Multiplicative Asymmetry (instrumental)	< 1x10 ⁻⁹
Stern-Gerlach (steering of the beam)	< 1x10 ⁻¹⁰
γ – ray circular polarization	< 1x10 ⁻¹²
β – decay in flight	< 1x10 ⁻¹¹
Capture on ⁶ Li	< 1x10 ⁻¹¹
Radiative β –decay	< 1x10 ⁻¹²
$m{eta}$ - delayed Al gammas (internal + external)	< 1x10 ⁻⁹
Uncertainties in applied corrections	
Neutron beam polarization uncertainty	< 2%
RFSF efficiency uncertainty	~ 0.5%
Depolarization of the neutron beam	< 0.5% (target-dependent)
Uncertainty in geometric factors	1%
Polarization of overlap neutrons	0.1%
Target Position	0.03%
Statistical Uncertainty (H ₂ & Al)	~1.3x10 ⁻⁸

Para-H₂ Asymmetry

Official statement from Collaboration regarding A_v :

"The preliminary result for the parity-violating asymmetry A_{v} is that it is small with a statistical error of about 13 ppb."

Thank you for your Attention

The NPDGamma Observable

ISINN-23