Study of secondary neutron interactions with ²³²Th, ¹²⁹I, and ¹²⁷I nuclei with the uranium assembly "QUINTA" at 2, 4, and 8 GeV deuteron beams of the JINR Nuclotron accelerator

J. Adam, V.V. Chilap, V.I. Furman, <u>J. Khushvaktov</u>, Yu. Kish, V.S. Pronskikh, A.A. Solnyshkin, V.I. Stegailov, M. Suchopar, V.M. Tsoupko-Sitnikov, S.I. Tyutyunnikov, R. Vespalec, J. Vrzalova, V. Wagner, B.S. Yuldashev, L. Zavorka, M. Zeman

Joint Institute for Nuclear Research, Dubna, Russia Nuclear Physics Institute ASCR PRI, Czech Republic Center of Physical and Technical Projects "Atomenergomash", Moscow, Russia Institute of Nuclear Physics AS RU, Tashkent, Uzbekistan

Outline

Motivations

Experimental process

Cross sections from EXFOR data

Experimental results and comparison with the calculations with MARS-15 and MCNPX-2.7

Simulations by FLUKA for definition efficiency of HPGe planar detector

Simulations by FLUKA for experiments on the setup "QUINTA"

Summary

Motivations

The ADS-related research has long been attracting attention of the international scientific community primarily due to societal concerns with the problem of the long-lived radioactive waste storage and the proposals of subcritical nuclear power plant concepts based on the uranium-thorium cycle, and controlled by high-energy particle accelerators (Accelerator Driven Subcritical systems)

Experimental setup «Quinta»

QUINTA	BEAM	46 th Nuclotron run December 2012
natU 127,1291 239Pu 235U 233U 238Pu natTh 241Am 237Np	↓15	1 GeV/n 4 GeV/n

Data on the irradiation conditions and characteristics of the samples Th-232						
Energy of deuterons, GeV	2	4	8			
Irradiation time, min.	376	561	970			
Integral flux of deuterons	3.02(10)E+13	2.73(10)E+13	9.10(40)E+12			
Samples	Th-232	Th-232	Th-232			
Mass, g.	0.975	1.000	0.249			
Diameter of samples, sm	1.3	1.3	1.3			

Cross sections for ²³²Th(p,fission) and ²³²Th(d,fission) reactions from EXFOR data

Reaction rates for residual nuclei of 232 Th from experiments E_d = 2,4,8 GeV, December, 2012. ("QUINTA" with Pb shields)

Dependence of reaction rates on the deuteron energy for 232 Th(n,fission) and 232 Th(n, γ) reactions

Calc. Pronskikh is calculated by MARS-15, Calc. Suchopar is calculated by MCNPX-2.7 + TENDL(TALYS) Dependence of the (n,γ) , (n,xn) reactions rate of the energy deuterons in the samples ¹²⁷I and ¹²⁹I

Definition of neutron fluence using ¹²⁷I(n,xn) reactions 0.8R – 80% of reaction rate R(exp.) (by Calc.2. neutrons in energy interval dE adding 80(5)% contribution to the reaction rate), σ – averaged values of reaction cross sections for energy interval dE, F – fluence of neutrons (n/MeV·d·cm²).

! We couldn't defined of neutron fluence using ¹²⁹I(n,xn) reactions because, have uncertainties depending on the mass of ¹²⁹I in the samples I129b(4GeV) and I129c(8GeV), according to our estimates on the passport of the sample I129c(8GeV) mass of ¹²⁹I showed to 30(5)% less.

2 GeV						
Nuclear reactions	0.8R	dE (MeV)	σ (b)	F		
¹²⁷ l(n,8n) ¹²⁰ l						
¹²⁷ l(n,7n) ¹²¹ l	7.15(29)E-30	57 – 100	0.110	1.51(30)E-6		
¹²⁷ l(n,5n) ¹²³ l	3.16(13)E-29	38 – 73	0.249	3.63(73)E-6		
¹²⁷ l(n,4n) ¹²⁴ l	4.40(18)E-29	29 – 61	0.337	4.08(82)E-6		
¹²⁷ l(n,2n) ¹²⁶ l	1.68(6)E-28	10 – 44	0.621	8.0(16)E-6		
4 GeV						
¹²⁷ l(n,8n) ¹²⁰ l	7.20(64)E-30	66 – 120	0.050	2.65(53)E-6		
¹²⁷ l(n,7n) ¹²¹ l	9.84(48)E-30	57 – 100	0.110	2.07(41)E-6		
¹²⁷ l(n,5n) ¹²³ l	4.18(22)E-29	38 – 73	0.249	4.80(96)E-6		
¹²⁷ l(n,4n) ¹²⁴ l	7.07(57)E-29	29 – 61	0.337	6.6(13)E-6		
¹²⁷ l(n,2n) ¹²⁶ l	2.80(7)E-28	10 - 44	0.621	1.33(26)E-5		
8 GeV						
¹²⁷ l(n,8n) ¹²⁰ l	1.73(14)E-29	66 – 120	0.050	6.4(13)E-6		
¹²⁷ l(n,7n) ¹²¹ l	2.49(16)E-29	57 – 100	0.110	5.2(10)E-6		
¹²⁷ l(n,5n) ¹²³ l	9.44(56)E-29	38 – 73	0.249	1.08(22)E-5		
¹²⁷ l(n,4n) ¹²⁴ l	1.56(8)E-28	29 – 61	0.337	1.45(29)E-5		
¹²⁷ l(n,2n) ¹²⁶ l	5.74(16)E-28	10 - 44	0.621	2.72(54)E-5		
1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 0,2 0,0 0,2 0,0 0,0 0,0						
¹⁵ U 2U 4U 6U 8U 10U 12U 14U 16U 18U 20U						
Energy of neutrons, [MeV]						

Efficiency of HPGe planar detector

Simulation of 100 keV gamma rays with FLUKA

Total efficiency (exp.) is measured, using ⁵⁵Fe, ²⁴¹Am, ⁴⁴Ti, ⁵⁷Co, ¹³⁹Ce, ¹¹³Sn and ¹³⁷Cs sources.

Nuclear interaction models in FLUKA

Dual Parton Model (DPM) - E > 5 GeV/n

Relativistic Quantum Molecular Dynamics Model (RQMD) – 0.1 GeV/n < E < 5 GeV/n Boltzmann Master Equation (BME) theory – E < 0.1 GeV/n

Some results of simulations for experiment E_d = 6 GeV, March, 2011. ("QUINTA" without Pb shields)

Dependence of calculated reaction rates on the mass of residual nuclei in the samples ²³²Th

E_d = 6 GeV, March, 2011.
("QUINTA" without Pb shields)
9Th – was placed between the first and second sections
10Th – was placed between the second and third sections
11Th – was placed between the third and fourth sections
12Th – was placed between the fourth and fifth sections

Calculated fission reaction rates for ²³²Th with 4 GeV deuterons

Dependence of calculated reaction rates on the charge of residual nuclei in the samples ²³²Th

20

25

E_d = 6 GeV, March, 2011.
("QUINTA" without Pb shields)
9Th – was placed between the first and second sections
10Th – was placed between the second and third sections
11Th – was placed between the third and fourth sections
12Th – was placed between the fourth and fifth sections

Calculated fission reaction rates for ²³²Th with 4 GeV deuterons

Dependence of calculated reaction rates on the mass of residual nuclei in the sample ²³²Th (10Th)

- Evaporation products
- Fragmentation products
- Low and high energy fission products

- Deep spallation products
- Spallation products
- Quasi-elastic products

Neutron fluence $d^2\Phi/dEd\Omega$ in the setup "QUINTA" at the beam axis (calculated by FLUKA)

Ratio of the experimental reaction rate to the calculations (Exp./Calc.) by FLUKA for some of residual nuclei in the sample ²³²Th (9Th)

Ratio of the experimental reaction rate to the calculations (Exp./Calc.) by FLUKA for some of residual nuclei in the samples ²³²Th (11Th and 12Th)

Summary

- The experimental data obtained in the study of the interaction of secondary neutrons with ²³²Th, ¹²⁹I, ¹²⁷I nuclei at the "QUINTA" show a proportional increase in the values of reaction rate with increasing energy of deuterons, for almost all produced nuclei.
- The experimental results were compared with Monte Carlo simulations performed with the MCNPX2.7 and MARS15 code. Ratios of experimental and calculated rates of (n,γ), (n,xn) and (n,fission) reactions are in the range 0.5 – 2.4.
- Ratios of experimental and calculated with FLUKA reaction rates for residual nuclei of ²³²Th samples (irradiated on the central axes of "QUINTA", P1, P3 and P4) are in the range 0.3 – 6.6.
- Defined fluence of neutrons (10 120 MeV) by ¹²⁷I(n,xn) reactions in good agreement with calculated by MCNPX 2.7.

Thanks for your attention