

Isotopic Composition Analysis and Age Dating of Uranium Samples from Nuclear Fuel Cycle by High Resolution Gamma-ray Spectrometry

<u>A. Apostol^{1,2}</u>, A. Pantelica¹, O. Sima², V. Fugaru¹

- 1. Horia Hulubei National Institute for Physics and Nuclear Engineering
 - (IFIN-HH), Bucharest-Magurele, Romania
 - 2. University of Bucharest, Faculty of Physics, Bucharest-Magurele, Romania e-mail: andrei.apostol@nipne.ro

Content

1. Why?

2. What?

3. How?

Over 630 nuclear trafficking incidents were recorded in the Black Sea states between 1991 and 2012

Date	Location	Material	Amount (grams)	IAEA confirmed
6 Oct. 1992	Podolsk, Russia	HEU (90%)	1500	No
29 July 1993	Andreeva Guba, Russia	HEU (36%)	1800	No
28 Nov. 1993	Polyarny, Russia	HEU (20%)	4500	No
Mar. 1994	St Petersburg, Russia	HEU (90%)	2972	Yes
10 May 1994	Tengen-Wiechs, Germany	Pu	6.2	Yes
13 June 1994	Landshut, Germany	HEU (87.7%)	0.795	Yes
25 July 1994	Munich, Germany	Pu	0.24	Yes
8 Aug. 1994	Munich Airport, Germany	Pu	363.4	Yes
14 Dec .1994	Prague, Czech Republic	HEU (87.7%)	2730	Yes
June 1995	Moscow, Russia	HEU (21%)	1700	Yes
6 June 1995	Prague, Czech Republic	HEU (87.7%)	0.415	Yes
8 June 1995	Ceske Budejovice, Czech Republic	HEU (87.7%)	16.9	Yes
29 May 1999	Rousse, Bulgaria	HEU (72.65%)	10	Yes
2000	Elektrostal, Russia	HEU (21%)	3700	No
26 June 2003	Sadahlo, Georgia	HEU (89%)	-170	Yes
Jan. 2006	Tbilisi, Georgia	HEU (89%)	79.5	Yes
11 Mar. 2010	Tbilisi, Georgia	HEU (89%)	18	Yes
27 June 2011	Chisinau, Moldova	HEU (???)	4	Yes

Table 1. Highly credible incidents involving unauthorized possession of highly enriched uranium and plutonium-239,1992–2013

HEU = highly enriched uranium; IAEA = International Atomic Energy Agency; Pu = plutonium.

FORENSICS IN NUCLEAR SECURITY Sharing Knowledge

Nuclear Forensics

Age, Isotopic Composition, Physical Form, Chemical

Composition, Microstructure, Impurities, Dimensions Surface roughness

National Nuclear Forensic Library

Point of Loss-of-Control

Why strengthen Nuclear Forensic capabilities in Romania?

Example of Nuclear Forensics Library DATA

Uranium production facility of country R is producing UO₂ powder of ceramic type with enrichment lower then 20%. General characteristics of the produced powder of Uranium dioxide (UO₂):

1	Uranium Enrichment (²³⁵ U%), % mass	From 0.7 to 20									
2	Uranium Content, % mass	>87.42									
3	Humidity concentration, % mass	<0.3									
4	Oxigen coeficient (O/U)	2.077									
5	Grain size, mm	<0.9									
Mass concentration of metallic impurities											
No.	Element	ppm									
1	Al	30									
2	В	0.3									
3	С	45									
4	Са	100									
5	Cd	0.3									
6	Cr	30									
7	Cu	3									
8	F	20									
9	Fe	70									
10	Mg	7									
11	Мо	30									
12	Ν	50									
13	Ni	30									
14	Si	30									
15	Mn	3									
16	Pb	30									
17	V	30									
18	W	19									

Uranium Isotopic Composition Analysis and Age-Dating

Uranium Isotopic Composition Analysis of UMETA-UAERES samples using High Resolution Gamma Spectrometry and MGAU 4.2 code

energy-calibration gain set

Recommended Non-Destructive Assay (NDA) Systems *BEGe detector, LEGe detector*

0.075 keV/channel 307 keV on 4096 channels Large NDA Systems Coaxial HPGe

0.095 keV/channel

1.5 MeV in a single 16k spectrum.

FWHM <750 eV at 122 keV

The main energy region analyzed by MGAU 4.2

[1] R. Gunnink, W.D. Ruhter, P. Miller, J. Goerten, M. Swisnhoe, H. Wagner, J. Verplancke, M. Bickel, S. Abousahl, MGAU: A new analysis code for measuring U-235 enrichments in arbitrary samples, IAEA-SM-333/88.

Detector Characteristics/Experimental Setup

- GEM-30185, Relative efficiency: 30%, Resolution: 875 eV at 122 keV (Low background set-up, Lab. GammaSpec)
- 2. GL0105P, Resolution 495 eV at 122 keV (Remus), Active area: 100 mm²
- 3. GL0055P, Resolution 495 eV at 122 keV (Romulus), Active area: 50 mm²

Nuclear Forensics Gamma Spectrometry Systems at IFIN-HH

Uranium Isotopic Composition Analysis UMETA-AAERES (MGAU 4.2)

Material	Declared Enrichment	m (g)	T (b)	Measured Isotopic Composition								
	Linichinent	(8)	(11)	Uranium 234		Uraniun	n 235	Uranium 238				
				Weight (%)	σ (%)	Weight (%)	σ (%)	Weight (%)	σ (%)			
UMETA-0	0.5	2.11	19.9	-	-	0.49	7.53	99.50	0.04			
UMETA-01	1	2.27	48.1	0.011	18.46	1.01	1.75	98.98	0.02			
UMETA-03	3	2.06	5.4	0.028	31.63	2.99	2.49	96.98	0.08			
UMETA-06	6	1.96	15.6	0.046	9.33	5.99	0.98	93.97	0.06			
UMETA-1	10	2.03	16.7	0.080	6.15	9.97	0.85	89.95	0.1			
UMETA-2	20	2.36	8.6	0.164	3.8	19.81	0.77	80.02	0.19			
UMETA-3	30	2.37	15.5	0.247	2.92	29.80	0.67	69.95	0.29			
UMETA-6	60	1.84	7.9	0.504	2.40	59.02	0.72	40.47	1.07			
UAERES	93	1.87	23.2	0.988	1.25	92.18	0.79	6.83	10.75			

Uranium age-dating of UMETA-UAERES samples using High Resolution Gamma Spectrometry

The Uranium-238 Decay Chain

Uranium Age Dating

²¹⁴Bi/²³⁴U Chronometer

$$\frac{A_{\text{Bi214}}(T)}{A_{\text{U234}}(T)} = \frac{A_{\text{Bi214}}(T)}{A_{\text{U234}}(0)} = \frac{A_{\text{Ra226}}(T)}{A_{\text{U234}}(0)} = \lambda_2 \lambda_3 \left[\frac{e^{-\lambda_1 T}}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{e^{-\lambda_2 T}}{(\lambda_1 - \lambda_2)(\lambda_3 - \lambda_2)} + \frac{e^{-\lambda_3 T}}{(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \right]$$

$$\frac{1}{1} \frac{2^{34}\text{U}}{2^{34}\text{U}} \frac{2.46\text{E}+05}{2.46\text{E}+05} \frac{2.823\text{E}-06}{2.823\text{E}-06}}{2} \text{Taylor Series around T=0}$$

$$\frac{A_{\text{Bi214}}(T)}{A_{\text{U234}}(T)} = \frac{1}{2}\lambda_2\lambda_3 T^2$$

[2] Nguyen, C. T., J. Zsigrai, Gamma-spectrometric uranium age-dating using intrinsic efficiency calibration, Nuclear Instruments and Methods in Physics Research B 243 (2006) 187–192.

$$\frac{A(^{214}Bi)}{A(^{234}U)} = \frac{A(^{214}Bi)}{A(^{238}U)} \left(\frac{A(^{235}U)}{A(^{238}U)} \frac{A(^{234}U)}{A(^{235}U)}\right)^{-1}$$

$$\frac{A(^{214}Bi)}{A(^{238}U)} = \frac{cps_{609.3}/I_{609.3}}{\mathbf{F(609.3)}}$$

$$\frac{A(^{234}U)}{A(^{235}U)} = \frac{cps_{120.9}/I_{120.9}}{\mathbf{f(120.9)}}$$

$$\frac{A(^{214}Bi)}{A(^{234}U)} = \frac{A(^{214}Bi)}{A(^{238}U)} \left(\frac{A(^{235}U)}{A(^{238}U)} \frac{A(^{234}U)}{A(^{235}U)}\right)^{-1}$$

$$\frac{A(^{214}Bi)}{A(^{238}U)} = \frac{cps_{609.3}/I_{609.3}}{\mathbf{F(609.3)}} \qquad \qquad \frac{A(^{234}U)}{A(^{235}U)} = \frac{cps_{120.9}/I_{120.9}}{\mathbf{f(120.9)}}$$

Activity ratios determination / Relative efficiency curves

$$\mathbf{A} = \mathbf{R} / (\boldsymbol{\varepsilon} \cdot \mathbf{I}) \quad \Longrightarrow \quad \mathbf{A} \cdot \boldsymbol{\varepsilon} = \mathbf{R} / \mathbf{I}$$

- A activity
- **R** photon detection rate [counts per second, cps]
- ϵ Full Energy Peak Efficiency
- \mathbf{I} Emission probability

F(609.3)

Y =1.51915-4.7861E-4 X

f(120.9)

		GEM		GEM		Remus						
		(fit 609 keV)		(fit 121 keV)								
		R1		R2		R3		R4= R1/(R2*R3)				
CPR Code	235U(%) (aprox)	A(214Bi)/ A(238U)	σ (%)	A(234U)/ A(235U)	σ (%)	A(235U)/ A(238U)	σ (%)	A(214Bi)/ A(234U)	σ (%)	ΔТ (у)	σ (y)	Date (zero)
U-META-0	0.5	3.365E-05	100	17.863	36.4	0.0319	7.5	5.90E-05	106.7	172	184	1843.3???
U-META-01	1	1.673E-05	100	23.971	8.8	0.0656	1.8	1.06E-05	100.4	73.1	73.4	1942.2???
U-META-03	3	3 924E-05	17 9	20 215	8.48	0 1984	25	9 78F-06	20.0	70 1	14.0	1945.3(14.0)
U-META-03	3	3.924E-05	17.9	26.951	31.7	0.1984	2.5	7.34E-06	36.5	60.7	22.2	1954.6(22.2)
U-META-06	6	4-827E-05	16.6	20.561	10.4	0.4101	10	5.73E-06	19.6	53.6	10.5	1961.7(10.5)
U-META-06	6	4.827E-05	16.6	22.459	9.4	0.4101	1.0	5.24E-06	19.1	51.3	9.8	1964.0(9.8)
U-META-1	10	1.380E-04	12.6	21,466	9.10	0.713	0.9	9.02E-06	15.5	67.3	10.5	1948.0(10.5)
U-META-1	10	1.380E-04	12.6	23.370	6.21	0.713	0.9	8.28E-06	14.0	64.5	9.0	1950.8(9.0)
U-META-2	20	1.184F-04	8.3	21.581	9.71	1.594	14	3.44F-06	12.8	41.6	53	1973.8(5.3)
U-META-2	20	1.184E-04	8.3	24,720	76	1.594	14	3.01E-06	11.3	38.8	4 4	1976.5(4.4)
U-META-2	20	1.364E-04	13.6	21.796	5.7	1.594	1.4	3.93E-06	14.8	44.4	6.6	1971.0(6.6)
U-META-2	20	1.364E-04	13.6	24.720	7.6	1.594	1.4	3.46E-06	15.6	41.7	6.5	1973.7(6.5)
U-META-3	30	2 783E-04	81	20 886	9.3	2 740	07	4 86F-06	12.3	49 4	61	1966.0(6.1)
U-META-3	30	2.783E-04	8.1	24.049	3.0	2.740	0.7	4.22E-06	8.6	46.1	4.0	1969.4(4.0)
	60	7 312E-04	6.6	21 443	8 1	9 378	13	3 64E-06	10.5	42 7	4.5	1972 6(4 5)
U-META-6	60	7.312E-04	6.6	24.721	2.5	9.378	1.3	3.15E-06	7.2	39.8	2.9	1975.5(2.9)
U-AE-RES	93.3	1.377E-02	10.4	26.456	10.4	86.729	10.8	6.00E-06	18.2	54.9	10.0	1960.4(10)

Age dating of 93% enriched Uranium sample U-AE-RES using Monte Carlo simulations software GESPECOR and high resolution low background gamma spectrometry

The geometry transfer to GESPECOR software

COINCIDENCE-SUN Tutorial Stand	IMING CORRECTIO lard M.C. Fa	DNS AND EFFICIEN	NCY k Effy Tot. Effy	Close					Selected: GEM30185.det	Available: DT00.DET GEM10P470 GEM10P470
T.W.FONT PRIN C:\Program	⊤ Files (x86)\	Gespecor4	2\GESPECOR\	results\HEU_C	33_FIN	AL.sco	81 lines beginn	ing with line 1	-GEOMETRY Selected: :TALONpctG3.get	Available: 3MVGeom.g ETALONpctt FTALONnctt
Nuclide	Decay	Energy	Yield	FC	Nsec	Nsum	IdealEff.	Err.(%)		Emcompo
									-SOURCE MATRIX	
U-234 U-235 U-235 U-235 U-235 U-235 PA-234M PA-234M PA-234M PA-234M PA-234M PA-234M PA-234M PA-234M	ALPHA ALPHA ALPHA ALPHA BETA- BETA- BETA- BETA- BETA- BETA- BETA- BETA- BETA-	120.90 143.76 163.33 182.61 185.71 205.31 258.26 766.36 1001.03 1193.77 1510.20 1737.73 1831.30 609.32	0.3420E-03 0.1096E+00 0.5080E-01 0.3400E-02 0.5720E+00 0.5010E-01 0.7280E-03 0.2940E-02 0.8370E-02 0.1347E-03 0.1287E-03 0.2110E-03 0.1720E-03 0.4519E+00	0.10000E+01 0.99942E+00 0.99857E+00 0.99902E+00 0.99908E+00 0.99908E+00 0.99808E+00 0.10004E+01 0.10004E+01 0.10019E+01 0.10000E+01 0.98099E+00	1 2 8 2 7 4 5 3 7 1 0 5 1	0 0 1 0 2 0 0 1 4 5 8 0 0	0.18602E-02 0.27991E-02 0.36161E-02 0.43500E-02 0.50450E-02 0.58934E-02 0.37741E-02 0.31272E-02 0.27615E-02 0.22967E-02 0.20443E-02 0.19517E-02 0.44050E-02	0.22E+00 0.11E+00 0.13E+00 0.14E+00 0.12E+00 0.16E+00 0.26E+00 0.27E+00 0.27E+00 0.24E+00 0.27E+00 0.30E+00 0.16E+00	Selected: CoCl2.mat Density: 1.924 - SHIELD Selected: eldingGem30185. View File from Dire	Available: 3161.mat AIR.MAT AL.MAT Available: SH00.SHI Shielding3N ShieldingGa
									Program Files Gespecor42 GESPECOR bin File: defa.ini ENLOG.GES GELNATEN.GES GELNFOTO.GES	(x86)

[3] O. Sima, D. Arnold, C. Dovlete, GESPECOR: A versatile tool in gamma-ray spectrometry, Journal of Radioanalytical and Nuclear Chemistry, Vol. 248, No. 2 (2001) 359-364

SDD = 7.62 cm t_m (h)= 15.92

		GEM		GEM		Remus				
		(fit 609 keV)		(fit 121 keV)				D 4		
		R1		R2		R3		R4= R1/(R2*R3)		
Somelo	22511/0/ \	A (24 4 Di)/		A (22 41 1)/		A/005UI)/		A(044D:)/		
Code	2350(%) (aprox)	A(21461)/ A(238U)	σ (%)	A(2340)/ A(235U)	σ (%)	A(2350)/ A(238U)	σ (%)	A(21461)/ A(234U)	σ (%)	Date (zero)
U-AE- RES	93.3	1.377E-02	10.4	26.456	10.4	86.729	10.8	6.00E-06	18.2	1960.4(10)
		(Gespecor, 609/1001)		(MGAU)		(MGAU)				
U-AE-										
RES	93.3	1.4769E-02	7.0	31.047	1.5	86.729	10.8	5.49E-06	12.9	1962.8(6.8)
		(Gesp., 609/1001)		(Gesp., 121/186)		(MGAU)				
U-AE-	93.3	1 4769F-02	7.0	25 399	33	86 729	10.8	6 70E-06	13.3	1957 3(7 7)
1120	00.0	(Gesp., 609/1001)	110	(Gesp., 121/186)	0.0	(Gesp.,186 /1001)	1010	002.00	1010	100110(111)
U-AE- RES	93.3	1.4769E-02	7.0	25.399	3.3	80.077	4.9	7.26E-06	9.2	1954.9(5.5)
Gespeco r								(Gespecor, 609/121 keV)		
U-AE- RES	93.3							7.26E-06	5.94	1954.9(3.6)

History of Net Production of Weapons-Grade Uranium by the United States

[4] Steven Aftergood and Frank N. von Hippel, REPORT THE U.S., HIGHLY ENRICHED URANIUM DECLARATION: TRANSPARENCY DEFERRED BUT NOT DENIED

Limitations

Software limitations (Geometry description)

Future Work

Nuclear Forensics

Age, Isotopic Composition, Physical Form, Chemical Composition, Microstructure, Impurities, Dimensions Surface roughness

National Nuclear Forensic Library

Point of Loss-of-Control

3 MV TANDETRON ACCELERATOR

1 MV TANDETRON ACCELERATOR (AMS)

Forensics can help reproduce the radiological incidents or even better –

Prevent Them

"In a strange turn of history, the threat of global nuclear war has gone down, but the risk of a nuclear attack has gone up." ©