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Where is Zittau? 

• Nearby former 
uranium mining 
sites ([old times-] 
GDR, CŠSR, Poland) 

• Geochemistry, 
geological age of 
these sites 

• Reactors at/next to 
Oklo (Gabon) 

• Possible even earlier 
sites (Kuroda) 

2 

Oklo 
uranium 
open pit  
now after 
U mining 
was term-
inated 

Radioactive 
residue 
distributions 
around Kowary 
mine 



Recall some facts on early-Earth NFRs 

• Oklo (Gabon): 1.8 bio. years 
old, moderation of NFRs by 
very hot to supercritical 
water; some 20 NFRs were 
excavated and identified 

• Older ones: just indirect 
evidence; probably C-
moderated by organics, 
photochemical „ignition“ 

• Evidence from scatter of 
certain element isotopic 
patterns (cp. ISINN-22 
proceedings, p.379 ff.) 

• There are specialized 
bacterial biota which make 
use of radiogenic compounds 
for „running“ chemolitho-
autotrophy, now distributed 
worldwide within „low 
biosphere“ 
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Oklo XV NFR site, now accessible via 
a tunnel 



Photochem. U deposition • U(VI) is sole photo-active species → redox 
potential! 

• UO2
2+ is activated by visible light (λ ≈ 450 nm) 

• Spin transfer and decay of triplet states of 
organics like aldehydes, ketones, amines, alkenes 
or  

• Electron or H atom transfer (e.g. methyl ketones 
R-CO-CH3 → - ketene CH2=CO  → R; UVO2

+ (water) 

• Ɛ of excited state ≈ 2.4 V vs. SCE, τtriplet < 1 µs → 
high selectivity, redox and spin deexcitation do 
compete depending on ambient compounds/ions, 
product UO2

+ is fairly unstable 

• Only electron transfer will cause precipitation of 
UO2 or other insoluble oxides, U chemical 
enrichment 

→ formation of reactor depends on both presence of 
appropriate organics (must most likely be afforded 
by biota) and redox potential levels 

Effect of ionizing (ir-)radiation on redox potentials of 
mineral couples → NFR stability after formation, 
onset of criticality controlled by environment also  
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Ligand exchange by 
photooxidation, introduction 
of nascent CO 



Ion pairs: spin (multiplicity) does matter while many 
ligands are stable towards photooxidation 

• Photoredox processes in uranyl ion 
pairs: Os(III) does readily react 
whereas Ir(III) complexes bearing 
the same ligands (ox2-, Br-, I-) are 
inert (d5 vs. d6; electron transfer 
spin-allowed or not): 

• Decomposition of aldehyde 
(solvent) → (several) CO ligands 
transferred to Os, permitting 
synthesis of unstable polycarbonyls 
also  

• should likewise apply to Fe(III) vs. 
Fe(II) [second criterion for external 
redox potential!] 
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photochemical H abstraction 
by [UO2(OH)]+ (pH = 5 – 8), 
then elimin. of water;  
 
Region of disproportionation 
of UO2

+, oxide precipitation 



Radiation chemistry: Ɛ of an electrode does 
increase under  β-, α-, p- or sometimes n irradiation 

• Effect independent of pH  
• Some reported work includes 

effects from nuclear reactions (e.g. 
for W- or WO3 electrodes exposed 
to 260 MeV protons [260-MeV 
projectiles would overcome  Z = 74 
Coulomb barrier for every projectile 
up to about Ni]), other 

• Results consistent in sign of effect 
(ΔƐ ≈ + 30…+ 400 mV)  

• Low-T activation by semiconducting 
catalyst phases doped with radio-
nuclides, e.g. ammonoxidation by 
Bi/Mo(99Mo) oxides or CO oxidation 
by Ce (144Ce or 238Pu)O2 
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Left: mixed/intermediate oxid. 
State chalcogenide (gener.p-
type), right: highest oxidation 
level 

Radiation causes 
electron flow → 
kind of charged 
battery 

Radiation 
enhances  
oxidation of 
environ-
ment  
comp-
onents 
(water etc.) 

Conducting 
connection 
(symb. Cu), 
e- - flow  



Partition between sediment/NFR and aqueous 
overlayer by complexation: a blueprint for…? 

Once sediment was produced involving biota, it 
contains lots of lipids and other esters  

→ pronounced affinity towards UO2
2+ while 

other ions, including fission products get 
readily leached into water phase above, there 
causing radiation-chemical transformations 
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Principles of radiation-chemical ligand, „food“ 
production 

CO2 

CO2 (Fe2+/α) → 
HCHO, HCOOH, succ2- 

NH4
+ + RCOOH (β, γ) 

→ AAs , lipids 

solid phase reser-
voir of metal ions 
(mineral assembly, 
clays…); leached by  
ligands 

ligated  Fe2+, Pb2+ 
(Mon+) 

Ionizing radiation 
emitted by  NFR  or 
radioactive minerals 
Located in water or 
upper sediment 

Ionizing radiation 
does process CO2 and 
N2, then CN-, ligands 
produced mobilize 
electron source Fe2+ 
and catalysts like  Mo 
salts, Pb2+ as 
complexes 
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General features of radiation-
chemical autocatalysis 

CO2 

CO2 (Fe2+/α) → 
HCHO, HCOOH, succ2- 

NH4
+ + RCOOH (β, γ) 

→ AAs , lipids 

ligated  Fe2+, Pb2+ 
(Mon+) catalyze transform-

ations of  HCHO,  
CH2=N(OH), 
possibly N2, CO 
Then more ligands 
increase metal ion 
leaching unlessbeing 
eaten by some biota  9 

Autocatalysis  means 
an active species is 
multiplied by the very 
chemical or nucoear 
process (n in reac-
tors!),  with materials 
taken from some 
reservoir 

Desamination prevails over N 
inclusion, whereas HCHO, formate, 
glyoxalate etc. are readily formed 
from CO2 by radiation →  elements 
for which x2d < 0 are best extracted 
from solids (REEs, alkaline earths ≠ 
Be,Mg; Mn, Mo, not V, Fe,  Cu or 
Zn)   



Alteration of inorganic species by radiation, change of 
element extraction (patterns) after onset of NFR activity 

Radiation-induced organic chemistry in water 
layer, air affords organics most of which act as 
ligands, extracting some metals including 
fission products to the water layer, causing 
secondary radiation chemistry 
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Feedback interaction between some primitive biota 
and a NFR enabled by it  

biota (heterotr.- or 
chemolithotr. biofilm) 

water  UO2
2+ 

 
sediment 
 

    NFR, 12C moder. 

The system can only form and persist when a biota provides conditions for NFR 
formation without being destroyed by local ionizing radiation (distance for shielding 
vs. mutual exchange of organics, ions): 
CO, CO2, (N2) → organics → feeding biota, leaching metal ions,   
 
 
fission products  
→ biomass growth → lipid accum. in sediment → accum. of uranium there → support 
of NFR → pos. feedback → moderation by organics, neg. feedback by organics eaten 

Distance NFR ↔ biofilm protects the 
latter from overly radiation while 
chemical entities can diffuse  
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fission-derived decay chains vs. AC feedback in radiation-
chemical catalytic chemistry  

• Mo through Pd produce 
hydrolytically stable complex 
anions; Kr, Xe, Zr, Nb do not 

• Radiation chemistry of some 
intermediate does produce certain 
ligands, enhancement and 
autocatalysis occur if  

a) ligands mobilize stable isotopes of 
same element (not 
prolific/impossible for Tc, PGMs, 
Ag but effective for Mo, Ce) and 

b) some ligand-forming reaction is 
catalyzed by the very element (e.g. 
Mo) 

→ production of nutrients then 
available to biota even rather far 
from radiation source (NFR) 

Fission product elements effective in 
this respect, their substrates and 
pertinent products 
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Is there an (ε+Δε) interval at near neutral pH which permits all 
components to co-exist?  

• Fe(II) required (not 
trivalent Fe!), Pb(II) 
must be stable 

• N as NH4
+ rather than 

oxidized, N2 

• ε close to or above 
CH4/CO2- or CH4/HCO3

- 
-limits 

• Which is the (redox) 
state of Mo then? 

• Potential and pH range 
• Possible precursor 

minerals; do they exist 
in Archaean 
sediments? 
 

Pourbaix diagrams of 
of C (top left), Fe (top) 
and N (left):  
appropriate co-exist-
ence in slightly acidic 
medium at ε ≤ + 0.1..≈ 
- 0.25 V  
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States of Ba, Pb, Mo determine fate of HCHO, yields of 
amino acids 

• Carbonate, sulfate 
levels, available Ba, 
Pb and catalysis of 
formose reaction 
(contribution by 
clays?) 

• Radiolysis of 
cyanide (→ glycine, 
urea, some 
polymers) vs. its 
oxidation  

states of Pb, Mo 
(right) 

Pb2+, Ba2+ are fully stable 
but anion-sensitive (precip.) 
while Mo forms MoO2

+ 
(prone to disproportion-
ation)  but not Mo3+ (the 
latter might reduce both N2 
and oximes)  
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NFR with partial shielding of surrounding 
SC minerals  

• Uranyl(VI) in lipophilic 
sediment layer; 
reoxidation near 
irradiated oxides → 
constrains external 
potential though CO2 
(besides CO) can 
contribute to radiation 
syntheses of 
substrates, ligands, 
nutrients   

• G values for glycine 
etc. formation 

• radiation-chemical 
processing of cyanide 
vs. stability of glycin-
ato-, succinato 
complexes of various 
metals 

stone  
  clay, sand 
 
Fe2O3  Fe3O4 

„air“ 
 
Water layer 
NFR area (dis-
solved, muddy 
or solid) 

CO2 

Fe2+; α-rad. → HCHO, RCOOH 

HCHO produced from CO2 
would also react with 
cyanide, eventually both 
producing glycolate and 
catalyzing HCN 
transformations 
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radiation-chemical potential shift and –shielding spatially organ-
ize e flow pathways 

• Ɛ does increase (few 
exceptions) when 
exposed to ionizing 
radiation regardless 
whether oxide film on 
metal is a p- or n-type 
semiconductor;  

• hydrogen-activating 
metals (Pt, Ni, Ru) turn 
into hydrogen elec-
trodes upon irradiation 
→ electrons will flow 
from radiation-
shielded to –exposed 
regions in mixed-
valence (one- or two-
phase) systems, with 
clay, sand getting 
conductive in radiation 

stone  
  clay, sand 
 
Fe2O3  Fe3O4 

„air“ 
 
Water layer 
NFR area (dis-
solved, muddy 
or solid) 

CO2 

Fe2+; α-rad. → HCHO, RCOOH 

White arrows: direction of 
redox/radiation-induced 
electron  flows, eventually 
releasing Fe2+ to water 
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Energy yields, G values during NFR formation and 
operation 

Conversion of „excess“ 
neutrons into ionizing 
(and  causing radiation 
chemistry) entities: 
• Fission, plus 
•  β decay of fission 
products 
•  (n, p)- or (n, α) 
reactions of 6Li, 10B, 35Cl 
If a radiation-chemistry 
product does extract  
metal ions efficiently 
from NFR „core“, G 
must be > 10-4 

Educt(s) product Kind of ioniz-
ing radiation 

G value [mol-
ec./100 ev] 

CO2, Fe2+ HCOOH α (40 MeV) 

succinic acid 

CN-
aq Glycine β (60Co) 

Urea 

CO + N2, water 
vapor 

glycine electron 
beam (1 MeV) 

alanine 

Reducing 
mixture 
(alkanes, NH4

+) 

glycine 

Alkanes, CO2, 
moisture 

Fatty acids 

glycine HCO-COOH, 
aspartic and 
diamino suc-
cinic acids 

α, 7Li  ( about 
1.5 MeV ) 
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Radiation-chemical feedback by selective extraction 
of certain fission products besides of U(IV, VI) 

• CN- → glycine, urea, polymers 
• Moist CO + N2 → amino acids 
• CO2 α, Fe2+ → HCOOH, HCHO, acetic, glycolic, malonic, and 

succinic acids   
• Glycinate does form stable complexes with many metal ions 

which do not make stable cyano- or oxalato complexes → 
extraction, upwelling → fission products contribute to 
radiation chemistry near water/air interface, besides of 
halide ions (82-85Br, 131I…) 

Which elements will behave like this (minutes to days after 
precursors were produced by fission)? -    

Mass range for 235U fission 82 – 106 and 128 – 152 – but only 
some fulfil chemical, radiation- and half-life criteria   
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The entire system: NFRs obtaining U from surround-
ings, fission products retained in aqueous phase  

• Water over sludge; radiation can 
penetrate partly into air if water 
overlayer is sufficiently thin 

• Partition changes along decay 
series and during prolonged 
irradiation of compounds in 
aqueous layer, fatty sediments, 
and air 

• No secondary thermal alteration 
of glycine (stability conditions) 
but radiolysis 

• Reoxidized (e.g. by contact with 
irradiated Fe oxides) U returns to 
lipid/ester-containing sediment, 
increasing NFR efficiency and 
lifetime 

• Radioactive decay series mean 
isobars will deliver radiation 
energy to different layers/phases 
and thus irradiate different comp. 

CN- → glycine, 
urea, polymers 
 REEs incl. Y, In get ex-

tracted from NFR 
mud back-ground to 
water layer 

Te, U(VI) migr. 
to sediment 

Ru, Pd, Br, I, 
Sr, Ba stay in 
aq. phase 

Contrib. from gas-phase 
radiolysis  if CO, or CO2/ 
Fe2+aq are present 
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NFRs would leave behind tell-tale isotopic pattern 
shifts in certain elements 

• Isotope patterns from 
fission are highly 
dissimilar of common 
ones (Ru, Nd at Oklo!) 

• Even-Z or odd-Z – where 
to look for the effects? 

• Even Z: largest scatter of 
terrestrial, meteorite 
isotopic abundances 
associated with 
fissiogenic isotopes, such 
as 99;101;102;104Ru vs. the 
other (lightest stable and 
100Ru) ones   
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Isotopic shieldimg in m = 
113 is reduced by 
population of  isomeric 
nuclear states → compos. 
(variations) of indium can 
be used for  detection! 



Isotopic scatter evidence; even-Z elements Ru, Xe, 
Sb, Ag 

• Odd-Z elements 
have two stable 
isotopes at best 

• Mattauch´s rules 
preclude isobaric 
shielding in odd-M 
fission product 
decay series, unlike 
fission yields then 
cause isotopic shifts 
vs. „common“ or 
„standard“ distrib-
utions provided 
[m1/m2] ≠ [ym1/ym2] 

• „suitable“ elements: 
Rb, Ag, In, (Sb), Eu  

• Data avail. for Ag, Sb   

element Masses of 
„stable“ 
isotopes 

Abund-
ance 
ratio 

Fission 
yield 
ratio 

remarks 

Rb 85; (87) 2.593 0.515 Correction for 
decay of 87Rb 

Ag 107; 109 1.076 4.454 
(total 
yields 
small) 

In 113; (115) 0.0449 1.434 
(total 
yields 
very 
small) 

36% isobaric 
shielding by 
113Cd, no loss by 
decay of 115In 

Sb 121; 123 1.342 0.816 
(total 
yields 
very 
small) 

Eu (151 [α]); 
153 

0.916 2.590 no loss by α 
decay of 151Eu; 
151Sm, 151Eu n 
capt-ure cross-
sections 
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But NFRs could not contribute to chemical, pre-
biotic evolution! 

• Uranyl accumulation 
takes lipid-enriched 
sediments, and reduced 
forms of U can only form 
in appropriate potentials 
or from U(IV), organic 
coillumination 
(photochemistry)  

• More heavy xenon (i.e., 
134;136Xe, possibly 
fissiogenic) in sediments 
<< 3.0 bio. years old, 
unlike 3.5 Ga North Pole 
(W Australia) 

Stability region of U in pre-Oklo 
NFR conditions allows U to stay in 
ist place while local oxidant 
avalability is required to transport 
to NFR site 
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No role of NFRs in biogenesis – but might someone 
feed on the products? 

• Productivity, G values of radiation-chemical 
and/or catalytic transformations 

• Carboxylic acids are readily formed in radiation 
chemistry whereas G for amino acid product-
ion is very small while β, α, 7Li nuclei (from 10B 
+ n) cause efficient desamination (directly, not 
via H2O2) → any organism which exploits this 
Cred; (indirectly, by leaching) Messent. source 
must tap another N source, e.g. radiogenic 
nitrate or NO from lightnings  

• M supply from leachable sediment, minerals is 
reduced  by consuming ligands by some biota 
→ causes P limitation also, works best if x2d < 0 
(essent. metals: Mn, Mo) 

• Desulforudis audaxviator 
• A role for radiation chemistry in early nitrogen 

assimilation, besides making and transforming 
HCN, amino acids? 

• Nitrogenases don´t like free oxygen while [C/N] 
becomes smaller in aerobic organisms 

• D. audaxviator also can use N2! 23 

D. audaxviator depends on 
radiogenic H2 for sulfate 
reduction, ATP synthesis while 
fixing C from CO2, carbonate) 



Ru as a key fission product and its bio-
related chemistry 

• RCN ↔ RCH2NH2 ↔ RCO-NH2, 
including aminonitriles, hydantoin 
formation, (CN)2 into AAN 

• Ru complexes attack esters, lactones by 
hydrogenation but not amides/peptides  

• Ru is enriched in laurite (Ru; Os)S2, 
erlichmanite (Os; Ru)S2, ruarsite (Ru; 
Fe)AsS particles (laurite pretty much 
distributed over Earth crust) 

• Cytostatic agent; Ru(III/II) nucleobase 
complexes are photoactive 

• Fission yields of 99;101;102;104Ru 

• Ru may do an excellent (hydrogenation 
or oxidation catalysis) job to bacteria, 
archaea next to some laurite… part--
icle/crystal (provided ester hydrogen-
olysis is avoided) – but will a few cm3 
with distinguished chemical 
properties/Ru accessability do to 
support an „exotic“ stem of bacteria? 

• (per)halogenates may be replaced with 
MnO2 for oxygen transfer 

• Ru in chemical evolution (Rasmussen)?    

NH3, amines 
(red;  radi-
ation chem-
stry of HCs  
+ N2) 

Amino acids, 
peptides 

NP2 replaced with oligopeptide, CO 
from atmosphere or HCOOH  

Formation of reduced Rh (Ru, Pd) 
complexes if amino acids, CO 
available → M insertion into H-
OCOR bonds → formation of 
hydrogeenation catalyts→ cleavage 
of esters 24 



Species of vertebrates, large insects which did 
survive although restricted to few m2 total 
area for long periods of time 

• Fishes, frogs, toads, 
chameleons 

• „Tree lobster“ 
→ when some m2/m3 will do 

in sustaining entire 
species of  animals of 3 – 
10 cm size (20 – 200 
individuals), bacteria can 
run on much less  space/ 
volume (probably ≤ 1 
cm3)!  

→ look for Ru-dependent 
stems/enzymes around 
sites where there are 
laurite particles!! 

• Role of Ru in prebiotic 
evolution? 

•  Secondary replacement of 
Ru in enzymes by Fe, Co, 
Ni, Mo (nitrogenase)?  

• Steps of evolution 
(towards  chemolithoauto-
trophy?) around early 
NFRs? 

Tiny chameleon 
Brookesia micra 
living under a single 
tree at a creek on a 
small Madegassian 
island 

the entire 
habitat of 
desert pup-
fish  
Cyprinodon 
diabolis – 5 
by 1.8 m! 
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How to build a NFR-similar microreactor – and for 
what purpose(s) • Reactors can start on very 

much lower intrinsic radio-
activity levels than RTGs (25 
kg 235U ≈ 2 GBq, α-emitters 
releasing some 5 kW therm  ≈ 6 
PBq) 

• Criticality is achieved only 
after secondary blue/violet/ 
NUV irradiation on spot of 
operation 

• Ester/formamide  derivative 
partition, with DMF inducing 
photoreduction of uranium  

G values for (NO2 + 
N2) formation from 
aq. nitrate 
solutions; G  ≈ 0.02 
(3 M NO3

-) 
corresponds to 
some 105 NO2/fiss. 
event  → efficient 
oxidative leaching 
from U supply even 
with dilute nitrate 
feed solutions 
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Design, properties of photoactivated NFR-inspired 
microreactors  

• Combines U extraction and –photodeposition 
• Subcritical when deployed, „missing“ U then located in 

remote parts of solution phase(s) 
• Photochemical production of extraction agent 
• Carbon moderation by high-boiling organic layer to „cap“ 

region where U is and gets deposited 
• Avoiding criticality accidents prior to photochemical 

activation (in-solvent-moderation!) by e.g. Dy-(phosphate) 
glass or Ta-tubings for storage, photochemistry washes 
solid products to deposition 

• Steam turbine run with (small part of) organic moderator  
• Power output in kW range  
• Needs less shielding than a RTG! 
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Radiation chemistry on top of a reactor and 
controlled self-supply, photoactivation 

• radiation-chemical products 
oxidize UO2 and mobilize, 
lipophilize uranium via UO2

2+, 
then there is 

• reprecipitation by photo-
chemistry directly above 
reactor, providing controlled 
supply, „ignition“ of reactor 

• 233U (from thorium dioxide 
blanket) or fissile transuran-
ium isotopes might be 
transported in a similar 
manner 

• Access of light (sun or 
artificial) activates reactor to 
add fissile matter to compact 
volume including moderator 
slabs or –liquids (bright 
green, bottom right)  

Long-chained ethers/esters, 
dissolved NO2 (produced by ioniz. 
radiation in aq. phase)  

Water/DMF/ 
nitrate; 
photoprecip- 
ation of UO2 

 
     reactor 

light 
source 
control 
rod(s) 

Supply of  (partly) 
fissile material in 
oxidizable form 

circulation 
of solvent 

Ionizing radia-
tion (α, β, γ), 
absorbed by 
water/DMF 
phase to 
produce NO2 
oxidant  

dia-
phragm 
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Thank you very much for your kind 
attention! 
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Conclusion: neutrons, 
Fe(II) and uranium and 
CO2 make modest food 
for bacteria, sustaining 
some NFR system! 


