Angular correlation of gamma-rays in the inelastic scattering of 14 MeV neutrons on carbon

Yu.N. Kopatch Joint Institute for Nuclear Research

for the TANGRA collaboration

Grozdanov D., Zontikov A.O., Ruskov I.N., Skoy V.R., Bystritsky V.M.

Motivation: why to measure angular correlations in the inelastic scattering of neutrons

- Commissioning of the TANGRA setup
- Some discrepancies between available experimental data
- Investigate possible differences between neutron and proton scattering

• Angular anisotropy of the emitted gamma-rays has to be taken into account if the tagged neutron method is used for elemental analysis

Theoretical considerations n' 12C

In general case, the angular distribution is described by:

$$W(\theta_{\gamma},\phi_{\gamma})=\sum_{\nu}P_{\nu}\sum_{mm'}\alpha_{m}(\nu)\alpha_{m'}(\nu)X_{2m}\cdot X_{2m'},$$

Where

 θ, φ - polar and azimuthal angle of the gamma emission; P_{ν} - probability that mode ν is formed; $\alpha_m(\nu)$ - amplitude of the corresponding m-component X_{2m} - normalized spherical harmonic

If we integrate over $\boldsymbol{\phi}$ angle, it transforms into

 $W(\theta) \sim 1 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta)$

Angular anisotropy of 4.44 MeV γ -line from the inelastic scattering of 14 MeV neutrons on carbon

Tagged Neutrons Method – TNM

Main components:

- Neutron generator
- Position sensitive detector of α-particles
- Detectors of γ-rays / neutrons

The method is successfully used for detection of hazardous substances

We propose to utilize the method for basic and applied nuclear physics studies

Main advantages of the method:

- Precise determination of the number of neutrons hitting the target: each neutron is "tagged" by the α -detector
- Information about space and time location of the interaction of the neutron with a target (X,Y-coordinates are given by the pixels of the α -detector; Z,t-coordinates are defined by the time-of-flight)
- Due to the selection of a small space-time volume of interaction (voxel) the contribution of background is significantly reduced
- The method allows to identify different elements and substances using their characteristic gamma-rays Yu.N.Kopatch, Ininn23, May 26-29,

2015, Dubna

Schematic diagram of the experiments

Neutron generator ING-27

Produced by N.L. Dukhov All-Russian Automation Research Institute

Maximal intensity Neutron energy Neutron radiation mode Power supply Maximum power consumption Dimentions Weight Operation time ~5x10⁷ c⁻¹ 14.1 M9B steady-state 200±5 V 40 W 130x279x227 mm 8 kg ~800 hours

Detector of α -particles

9-pixel or 64-pixel position sensitive silicon detector

Multidetector system «Romashka»

24 Nal (TI) scintillation counters, hexagonal shape, size 78x90x200.

Energy resolution at 662 keV – ~8% Time resolution ~3nsec

Electronics and data acquisition

16/32/48-channel digitizers, in the form of one or several PCI-E cards.

Sampling frequency

100 MHz

The digitized signals are transmitted via the PCI-E bus in the computer's memory, where all the data processing and storage takes place.

Maximum load of the system is ~ 10⁵ events per second

Design of the geometrical arrangement and shielding

Intermediate setup

22 NaI(Tl) arranged <u>vertically</u> Distance from the source to the target: ≈ 85cm Distance from the target to the detectors: ≈ 32cm Detector shielding: 40cm of iron.

Design of the geometrical arrangement and shielding

Optimization of the target size: Monte Carlo simulations using GEANT4 code

Efficiency calibration

Beam profile measurements

Production run

~ 8 hours of irradiation with 10x10x5cm graphite as a target

Time-of-Flight Spectra

Energy Spectra

4.44 MeV gamma-ray yield as a function of the detector number

4.44 MeV gamma-ray yield as a function of $cos(\theta)$

Results & comparison with other data

Geometrical corrections using GEANT4 with user defined anisotropy

- Experimental data fitted with a 4th order polinomial
- Angular distribution, calculated by GEANT4 using real experimental geometry and experimental angular distribution as input

Experimental and calculated anisotropies after the 3^{rd} iteration (δ <10⁻²)

Final Legendre coefficients:

a2 = 7.83288E-02 a4 = -4.16003E-02

Conclusions & outlook

 Angular distribution of 4.44 MeV gamma-rays from the 1st excited state of ¹²C in the n,n'γ reaction has been measured with a good accuracy using the tagged neutron method.

The data are mostly consistent with previous measurements.

• The evaluated parameters of the anisotropy from the ENDF/B and JENDL libraries do not include 4th order coefficients which leads to a deviation at 0 and 180 angles.

• We're planning to measure/evaluate the elastically and inelastically scattered neutron angular distributions (differential cross sections), as well as the n'- γ angular correlations.

• Angular correlations in the inelastic scattering of 14 MeV neutrons on other nuclei, as well as in other reactions (e.g., n,2n) are to be investigated.

Thank you for your attention