Angular correlation of gamma-rays in the inelastic scattering of 14 MeV neutrons on carbon

Yu.N. Kopatch
Joint Institute for Nuclear Research

for the TANGRA collaboration

Grozdanov D., Zontikov A.O., Ruskov I.N., Skoy V.R., Bystritsky V.M.
Motivation: why to measure angular correlations in the inelastic scattering of neutrons

• Commissioning of the TANGRA setup

• Some discrepancies between available experimental data

• Investigate possible differences between neutron and proton scattering

• Angular anisotropy of the emitted gamma-rays has to be taken into account if the tagged neutron method is used for elemental analysis
In general case, the angular distribution is described by:

\[W(\theta, \phi) = \sum_v P_v \sum_{m,m'} \alpha_m(v) \alpha_{m'}(v) X_{2m} \cdot X_{2m'} , \]

Where
- \(\theta, \phi \) - polar and azimuthal angle of the gamma emission;
- \(P_v \) - probability that mode \(v \) is formed;
- \(\alpha_m(v) \) – amplitude of the corresponding \(m \)-component;
- \(X_{2m} \) – normalized spherical harmonic.

If we integrate over \(\phi \) angle, it transforms into

\[W(\theta) \sim 1 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta) \]
Angular anisotropy of 4.44 MeV γ-line from the inelastic scattering of 14 MeV neutrons on carbon
Tagged Neutrons Method – TNM

Main components:

• Neutron generator

• Position sensitive detector of α-particles

• Detectors of γ-rays / neutrons

$d + ^3\text{H} \rightarrow ^4\text{He} (3.5\text{MeV}) + \text{n} (14.1\text{MeV})$

The method is successfully used for detection of hazardous substances

We propose to utilize the method for basic and applied nuclear physics studies

Main advantages of the method:

• Precise determination of the number of neutrons hitting the target: each neutron is “tagged” by the α-detector

• Information about space and time location of the interaction of the neutron with a target (X,Y-coordinates are given by the pixels of the α-detector; Z,t-coordinates are defined by the time-of-flight)

• Due to the selection of a small space-time volume of interaction (voxel) the contribution of background is significantly reduced

• The method allows to identify different elements and substances using their characteristic gamma-rays
Schematic diagram of the experiments

- Neutron generator with built-in detector of α-particles
- Detectors of gamma-rays
- Detectors of neutrons
- Read-out electronics and data acquisition system
- Targets
- Shielding

Yu.N.Kopatch, Ininn23, May 26-29, 2015, Dubna
Neutron generator ING-27

Produced by N.L. Dukhov All-Russian Automation Research Institute

Maximal intensity: \(~5\times10^7\ \text{c}^{-1}\)
Neutron energy: 14.1 M\(\text{eV}\)
Neutron radiation mode: steady-state
Power supply: 200\(\pm\)5 V
Maximum power consumption: 40 W
Dimensions: 130x279x227 mm
Weight: 8 kg
Operation time: \(~800\ \text{hours}\)

Detector of \(\alpha\)-particles: 9-pixel or 64-pixel position sensitive silicon detector

Yu.N.Kopatch, Ininn23, May 26-29, 2015, Dubna
24 NaI (TI) scintillation counters, hexagonal shape, size 78x90x200.

Energy resolution at 662 keV – ~8%
Time resolution ~3nsec
Electronics and data acquisition

ADCM-16

16/32/48-channel digitizers, in the form of one or several PCI-E cards.

Sampling frequency 100 MHz

The digitized signals are transmitted via the PCI-E bus in the computer's memory, where all the data processing and storage takes place.

Maximum load of the system is ~ 10^5 events per second
Design of the geometrical arrangement and shielding

High resolution setup

Intermediate setup

High efficiency setup

22 NaI(Tl) arranged vertically

Distance from the source to the target: ≈ 85cm

Distance from the target to the detectors: ≈ 32cm

Detector shielding: 40cm of iron.
Design of the geometrical arrangement and shielding
Optimization of the target size: Monte Carlo simulations using GEANT4 code

Yu.N.Kopatch, Ininn23, May 26-29, 2015, Dubna
Efficiency calibration

Yu.N.Kopatch, Ininn23, May 26-29, 2015, Dubna
Beam profile measurements
Production run

~ 8 hours of irradiation with 10x10x5cm graphite as a target
Time-of-Flight Spectra

All events

15°

90°

165°

High threshold
($E_\gamma \sim 4$ MeV)

~3ns FWHM
Energy Spectra

All events

α-\(\gamma\) coincidence

Yu.N.Kopatch, Ininn23, May 26-29, 2015, Dubna
4.44 MeV gamma-ray yield as a function of the detector number
4.44 MeV gamma-ray yield as a function of $\cos(\theta)$
Results & comparison with other data

\[w \sim 1 + a \cdot \cos^2 \theta - b \cdot \cos^4 \theta \]

\[a = 1.58 \pm 0.04 \]
\[b = 1.22 \pm 0.05 \]
Geometrical corrections using GEANT4 with user defined anisotropy

- Experimental data fitted with a 4th order polynomial

Angular distribution, calculated by GEANT4 using real experimental geometry and experimental angular distribution as input

Experimental and calculated anisotropies after the 3rd iteration ($\delta<10^{-2}$)

Final Legendre coefficients:

- $a_2 = 7.83288E-02$
- $a_4 = -4.16003E-02$
Conclusions & outlook

• Angular distribution of 4.44 MeV gamma-rays from the 1st excited state of 12C in the $n,n'\gamma$ reaction has been measured with a good accuracy using the tagged neutron method.
• The data are mostly consistent with previous measurements.
• The evaluated parameters of the anisotropy from the ENDF/B and JENDL libraries do not include 4th order coefficients which leads to a deviation at 0 and 180 angles.

• We’re planning to measure/evaluate the elastically and inelastically scattered neutron angular distributions (differential cross sections), as well as the n’-\gamma angular correlations.
• Angular correlations in the inelastic scattering of 14 MeV neutrons on other nuclei, as well as in other reactions (e.g., $n,2n$) are to be investigated.
Thank you
for your attention