

Institute of High Energy Physics Chinese Academy of Sciences

Status of China Spallation Neutron Source

Tianjiao Liang

On behalf of CSNS Team

liangtj@ihep.ac.cn

- CSNS project overview
- Status of civil constructions
- Progress of accelerator system
- CSNS target station and instruments
- Closing Remarks

Institute of High Energy Physics

- Institute of Modern Physics (predecessor of IHEP) : established at 1950
- Institute of High Energy Physics: independent Institute for Particle physics at 1973

 \rightarrow Comprehensive and largest fundamental research center in China

- 1500 employees
- 500 PhD Students and 60 postdoctors
- Goal of IHEP:
 - International center of particle physics
 - Multiple discipline research center based on large scientific facilities (neutron/synchrotron).

3

Wang Ganchang 1907-1998

- One of the founders of JINR
- Deputy director of JINR (1958-1960)
- Academician of CAS
- Worked at the Veksler & Baldin Lab.
 Of high energies of JINR from Sep.
 1956 to Dec. 1960
- Discovery of anti-sigma minus hyperon at JINR

China Spallation Neutron Source

Tang Xiaowei 1931-

- Academician of CAS
- Worked at

http://t12.baidu.com/it/u=343773624 2,3041320908&fm=58the Dzhelepov Lab. of Nuclear Problem of JINR from Oct. 1956 to Dec. 1959

Development of total absorption
 Cerenkov Counter & sampling
 electro-magnetic calorimeter at

JINR Ю.Д. Прокошкин, Тан Сяо-вэй: Измерение энергии электронов и гамма-квантов счетчиком с малой эффективностью, Приб. и тех. Экспер., 3(1959)32.

Ю.Д. Прокошкин, Тан Сяо-вэй: Ливни, образованные позитронами с энергей от 100 до 400MeV. ЖЭТФ, 36(1959), 10.

A.Dunaitsev, Y. Prokoshkin,X.W.Tang:π⁻ star detector, Nucl. Instr. Meth.,8(1960)11.

В.Вишияков, А. Тяпкин, Тан Сяо-вэй: Низковолътные галогенные счетчики, Усп. Физ. Наук, 72(1960)133.

散裂中子源 China Spallation Neutron Source

Wang Naiyan 1935-

- Academician of CAS
- Worked at the Frank Lab.of Neutron
 Physics of JINR from 1959 to 1965
- Chairman of China Nuclear Society 2001-2009

Wang Shiji 1932-

- Academician of CAS
- Worked at the Frank Lab. Of Neutron Physics of JINR from 1959 to 1964

CSNS Project Overview

Chinese Spallation Neutron Source (CSNS)

Design Philosophy

- Build facility within the approved budget and time schedule
 - phase-I budget 1.82B CNY (~US\$281M)+marching fund
 - 6.5 year construction duration
- Build advanced facility with upgrade potential: 100kW beam power at phase I (with minimum initial cost, lower energy linac + high energy RCS), expandable to 500kW at Phase II (Using SC cavities to increasing energy of Linac to 250MeV, R&D is finished)
- Adopt proven technology to reduce risk
 - first high-power proton beam facility in China
 - high operational reliability for user facility
- Develop domestic technology to control cost
 - keep final fabrication in China as much as possible
 - closely collaborate with world leaders

Strong supports from the local governments

- 500M RMB match fund
- Land of 0.67km²: 0.27-km² land for phase-I. slope protection
- 3.6-km dedicated road to the site was finished.
- 110kV/10kV transform station: ready
- in charge of the management of civil engineering and will take care the deficit of the budget of the civil engineering if any.
- 50 min. by car from the Shenzhen Airport; 70 min. by train from Hongkong+25min. of car.

Key Milestones

Feb. 2001 **June 2005** Jan. 2006-Dec. 2013 **Dec. 2007 Sept. 2008** October 2009 February 2011 **May 2011** Sept. 2011 May 2012 – June 2016 Sept. 2011–May 2017 Oct. 2014- Sept. 2017 Jan. 2017 Sept. 2017 **March 2018**

Idea of CSNS discussed proposal approved in principle (CD-0) Prototyping R&D proposal reviewed proposal approved feasibility study reviewed feasibility study approved (CD-1) preliminary design approved (CD-2) construction start (CD-3) civil construction component fabrication installation & tests **RCS commissioning start** First beam on target project complete/operation start (6.5 years)

CSNS: Dongguan Branch of IHEP

- CAS opened 400 positions for CSNS.
- About 270 persons were hired for the Dongguan Branch.
- There about 78 physicists and engineers from IHEP working at Dongguan, most of them are senior, backbone.
- IHEP Beijing provides strong supports to the construction, commissioning and research in CSNS.

Status of Civil Construction

Layout of CSNS

中国教教中子源装置地 2012年6月20日 A 点始级

June, 2012

March, 2016

And the second states of the s

ann Min.

111

Civil Constructions

散裂中子源 China Spallation Neutron Source

Linac surface building

Ring Building

Target building & Experimental halls

Testing Building 2

Testing Building 2

Central Utility Building

Supporting Building

散裂中子源 China Spallation Neutron Source

Birds View of CSNS

Progress of Accelerator System

Linac Design

	Ion Source	RFQ	DTL
Input Energy (MeV)		0.05	3.0
Output Energy(MeV)	0.05	3.0	80
Pulse Current (mA)	20/40	20/40	15/30
RF frequency (MHz)		324	324
Chop rate (%)		50	50
Duty factor (%)	1.3	1.05	1.05
Repetition rate (Hz)	25	25	25

RCS Design

- Lattice of 4-fold symmetry, triplet.
- 227.92m circumference.
- Four long straight sections for injection, acceleration, collimation and extraction.
- 24 main dipoles with one power supply.
- 48 main quadruples with 5 power supplies.
- Ceramic vacuum chambers for the AC&pulsed magnets.
- 8 RF ferrite loaded cavities to provide 165 kV.

Linac Accelerator Installation

Finish commissioning with beam by Dec. 30,2016

RCS Installation Complete cold commissioning by Nov. 30,2016

Linac Front End Commissioning

- Front end installation completed 6 Apr. 2015,
- First H- beam from RFQ 21 Apr. with peak current of 28mA at 3MeV.
- The front end commissioning finished 13 July, and reached the design specification.

BEAM signal measured by CT at MEBT

The emittance measured at MEBT

DTL-1 Beam Commissioning

Jan.2016 negative hydrogen ion beam was successfully accelerated to the design energy of 21.6MeV with the first Drift **Tube Linac. The peak pulsed** current reaches 18mA, higher than the design value of 15mA. Almost all the beam go through the linac with 99.7% beam transmission rate.

CSNS target station and instruments

Major design consideration

High neutron production

- 1.6GeV proton beam; cladding W target; Be reflector; heavy water cooling (light water at beginning due to budget limit)
- Diverse neutron performance
 - 3 wings moderators: H_2O (300K, decoupled), H_2 (20K, decoupled+poisoned), H_2 (20K, coupled)
- High neutron utilization
 - compact configuration between TMR and bulk shielding; moderation by para-hydrogen; supermirror neutron guide; efficient position sensitive neutron detector with large coverage
- Optimization for 100 kW, but keeping upgrade capacity to 500 kW
 - Optimize the TMR for the beam power of 100 kW
 - Design shields with dose control < 2.5 μ Sv/h up to 500 kW
 - Embedded coolant pipes and tanks meet to requirement of 500 kW

Main design parameters

CSNS Target Station

Shielding Installation 2015/10/20

Target station

TMR maintenance: the horizontal target plug plus vertical MR plug, similar to the SNS/JPARC type.

- Feasible for 500 kW upgrade
- More compacted configuration between Target and Moderators/Reflector
- Small seal between trolley and helium vessel
- Separated room for liquid hydrogen system at the building roof
- High-bay to define a radiation control area for target station out from scattering hall

Engineering design of CSNS MR

Decouple & poison hydrogen moderator

Couple hydrogen moderator

Baseline parameters of CSNS TMR

proton beam	energy	1.6 GeV
	beam footprint VXH	40x120/60x160 mm(100/500kW)
	Beam profile	Gaussian, 2 sigma
target	material	Tungsten cladded by 0.3 mm tantalum
	length	570mm for W
	cross section VXH	70x170 mm
	coolant	D2O/H2O, 1.2mm channel
	target container	8mm SS316 (3mm for incident window)
СНМ	hydrogen volume	Φ150x106mm 20K 100% para
	Hydrogen vessel thickness	6mm except 4mm for view surface
	water premoderator thickness	20mm for target side 10mm other side
	view surface VxH	100x102.2 mm

Baseline parameters of CSNS TMR

DPHM	hydrogen volume	120x120x50 mm 20K 100% para
	hydrogen vessel thickness	5mm
	view surface VxH	100x102.2 mm
	poison position offset from center	5mm
	poisoner	Gd 0.2mm
	decoupler	Cd 0.5mm
DWM	water volume	120x120x50 mm
	water container thickness	4mm
	decoupler	Cd 0.5mm
reflector	Be reflector ((S-200-F))	Φ700x800mm
	Fe reflector (SS316)	Φ1000x1000mm
	coolant	D2O/H2O, 10% volume fraction for Be reflector, 5% for Fe reflector

Lethargy Spectra

Pulse shape @ 4A & pulse width

Neutronics performance

Couple Hydrogen Moderator spectra comparison (normalized to same proton beam power) Atmospheric neutron spectra comparison

Test of neutronics measurement instruments

Page

Target-moderator-reflector

CSNS target before welding

CSNS target after assembling

Coupled hydrogen moderator Beryllium reflector Reflector vessel under fabrication

Shielding system

- > The first set of **shutter** had passed acceptance check in January, 2015.
- The fixed shielding below the helium vessel and the shutter base plates had been installed and passed the acceptance check in April, 2015.
- > All other **fixed shielding** had passed acceptance check in September, 2015.

The first set of shutter

site installation of fixed shielding

Installation of shutter base plate Page 42

Helium vessel were manufactured and installed on site.

散裂中子源 China Spallation Neutron Source

Target Trolley under fabrication

Neutron Shutter installation

Pressure vessel of TS cooling system accepted

Cryogenic equipment installation

Neutron instruments

Neutron instruments

- Engineering design of three day-one instruments fixed. Control and data management/analysis are partially tested.
- Detailed time schedule of instrument construction and installation has been determined.
- New state-of-the-art instruments: still looking for other fund
 - the 13th national five-year plan
 - the probability to collaborate with local institutes and universities

> User meeting:

- Annual national user meeting with training course.
- Workshops on day one experiments every year

1. General Purpose Powder Diffractometer

Performance:

- For most users to determine crystallographic and magnetic structures in general purposes
- Best resolution $\Delta d/d \sim 0.2$ %.
- ~ mimutes for a diffraction histogram used by Rietveld refinement on ~ 1-g-weight sample
- Easily loading the ancillary equipment such as cryostat, furnace and pressure cell

Moderator		DPHM (20 K)
Bandwidth(Δλ)		4.5 Å
Max. Beam Size		$40(h) \times 20(w) \text{ mm}$
Flux at sample position		$\sim 10^{7} n/cm^{2}/s$
Best Resolution($\Delta d/d$)		0.2 % at $2\theta = 150^{\circ}$
Guide		Taper focus, m=3
Source to sample distance L1		30 m
Sample-	$2\theta = 150^{\circ}$	1.5 m
detector	2 <i>θ</i> =90°	2.0 m
distance L ₂	$2\theta = 15^{\circ}$	3.8 m

2. Multiple Purpose Reflectometer

Performance:

- Vertical sample geometry: solid film
- Reflectivity/diffraction
- Best resolution $\Delta Q/Q < 1\%$
- Polarizing analysis for spinoelectronics.
- In-suit study on growing films
- In-suit MOKE magnetic analysis
- Off-specular scattering
- Grazing-incidence small-angle scattering

Moderator	CHM (20 K)	
Bandwidth $(\Delta \lambda)$	6 Å	
Guide	Bender+Sraight+Taper	
	$40 \times 60 \rightarrow 20 \times 30 \text{ mm}^2$	
SS distance L1	19.5 m	
SD distance L2	2 m	
Sample table	6-axis movements	
Polarizer/analyzer	Supermirror type	
Detector	2D position-sensitive detector	
	Position resolution: 2 mm	

Local Control Room

3. Small Angel Neutron Scattering

Performance:

- Reliable SANS data between 0.01~0.5 Å⁻¹
- Instrument resolution better than ~30% around Q_{min}
- Good dynamic range, sample space
- Variable sample size

Target shielding

Moderator	CHM (20K)
MS distance	14 m
SD distance	1~5 m
Detector	
Effective area	$50 \times 50 \text{ cm}^2$
Resolution	1 cm (FWHM)
Δλ	0.4-8 Å
q range	0.004-3.4 Å ⁻¹

³He-MWPC- 200mm*200mm

- Active area: 200mm*200mm
- Detection efficiency: ~50%@ 2Å
- Pixel size: 2mm*2mm
- Max Counting rates: 10⁵ n/s

.

•

- Neutron beam test @ CARR
 - Position resolution(FWHM)
 X : 1.23mm, Y: 2mm

The detector will be ready by the end of October 2016

³He tube-LPSD for SANS

Effective area	1m×1m
Diameter	8mm
Effective length	1000mm
Detection efficiency	>60%@1.8Å
Maximum counting rate @ single tube	10 kHz
Pixel size	<1cm×1cm
Time resolution	2μs

- 3He tube will arrive in July, 2016
- The design of HV system finished and be tested.

Shifting Scintillator Neutron Detector (SSND)

- Module size 500mm imes 250mm
- Pixel size is 5mm imes 10mm
- Detection efficiency: over 50%@ 2Å

Testing with neutron beam @ Mianyang

Position Reso. 4.1mm*4.1mm(FWHM) Efficiency @2.6 Å : 54.3% / layer

- Mass production
 - Lab. In Sun Yat-sen university
 - 6 peoples, one year

Neutron beam monitor Based on GEM detector

Parameter	Specification
Active Area	50mm*50mm
Neutron Flux	<10 ⁸ n/cm ² .s
Spatial Resolution	<3mm
Timing Resolution	<1µs
Efficiency@1.8Å	~4%
Max Counting Rate	>1MHz
Working mode	Real-time

- Successful Application
 - Beam monitor @ CMRR
 - Beam monitor @ CARR

Electronics and DAQ System

- Design the data acquisition system of 3 types of detectors in the same structure
- Finished the Prototype of the FEB of GPPD. The key IC is designed by ourselves.
- Finished the prototype of the FEB of MR, under testing.
- The testing board of the FEE of SANS is finished, and the prototype will be done next step.
- Finished the most DAQ software design

Electronics system

The 7th international review meeting of accelerator technology advisory committee (ATAC) and neutron technology advisory committee (NTAC) of CSNS was held 10-12 Oct. 2015 in CSNS, Dongguan.

SNS MARSE AGADEMY OF SCIENCES

Other application

Closing Remark

- CSNS civil construction will be finished. Utility installation goes well.
- The installation of accelerators started Oct. 2014. RFQ and the first DTL reached the design requirements.
- We expect the first neutron beam by Sept. 2017, and open to users by Spring 2018.
- Great efforts to promote the user community and to prepare the day-one experiments.
- Proposal of Phase II (more spectrometers +Power upgrade) are under discussion.
- Look forward for cooperation with JINR in CSNS upgrade and the neutron scattering applications.

Many thanks for your attention