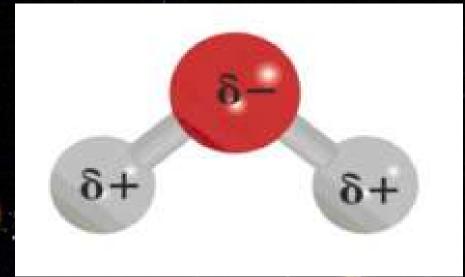
Perspectives in Astrobiology: Microfossils in Carbonaceous Meteorites Richard B. Hoover Visiting Research Professor **Buckingham Centre for Astrobiology**, University of Buckingham, UK Astrobiologist Athens State University, Athens, AL Modern Trends in Radiobiology and Astrobiology ISINN-24 - JINR, Dubna - 25 May 2016

Perspectives in Astrobiology INTRODUCTION **Fundamental Question of Astrobiology:** Is Life Restricted to the Planet Earth or more widely distributed across the Cosmos? **Recent Discoveries Have Invalidated Long-**Held Paradigms about Origin, Distribution And Evolution of Life on Earth and Provided **New Perspectives in Astrobiology**

Perspectives in Astrobiology Recent Space Missions Show Water, Biogenic Elements, Energy & Organics Widely Distributed Throughout the Universe Advanced Scanning Electron Microscopy, Stable Isotope and Radiochemical Neutron Activation Analysis Studies Reveal Carbonaceous Meteorites Contain Extraterrestrial Organics, Exotic Minerals and Rare Earth Elements and Embedded Microfossils of Recognizable Prokaryotic & Eukaryotic Life Forms

Perspectives in Astrobiology Life as Chemistry All known Life Requires Co-Existence of: • Water (Liquid, Solid or Gas) **Energy (Light, Chemicals, Food) Biogenic Elements (~20 are Life-Critical)** Major Biogenic Elements: (C, H, O, N, P, S) Minor Biogenic Elements: (Na, K, Mg, Ca, Cl) Trace Elements: (Mn, Fe, Co, Cu, Zn, B, Al, V, Mo, I) Needed for Energy, Metabolism, Reproduction and Construction of Life-Critical Biomolecules, _ Amino Acids , Proteins, DNA, RNA, ATP & Cells

Perspectives in Astrobiology Life as Physics


Carl Woese&N. Goldenfeld (2010) New Perspective-Life as Branch of Condensed Matter Physics like Superconductivity "Emergent Phenomena in Systems Far Out of Equilibrium Governed by Laws of Physics" -Self-Propelled Entities Creating Large Scale Structures & Movements (Active Matter) – Motility

Complexity is Key: Non-Equilibrium Statistical Mechanics Main Dynamical Modes are Collective (Swarming)

Most Cellular Life is Microbial: Microbes Exchange Genes (HGT); Communicate Between Cells (Quorum Sensing); Translocate Collectively (Swarming Motility); Form Biofilms

Requirements for Life: WATER <u>2nd most Abundant Molecule in Universe 60%-70% of Cells</u>

Reynolds Number ~ 10^{-5} - Coasting Distance 0.1 Angstrom

Spirulina platensis & Phormidiun tenue Bent Geometry (H-O-H Bond Angle - 104.5°) - Polarity of Molecule--High Surface Tension/Boiling Point Water has Maximum Density@ +3.8 °C to -2 °C Deep Oceans of All Planets&Moons Alike: (No Light; ~0 °C)

Water is "Fine Tuned" for Life Water is Essential to Structure, Stability, Dynamics and Function of Biological Macromolecules Mediates Chain Collapse in Protein Folding & **Interactions between Binding Partners to Search** Native Topology via Funneled Energy Landscape Actively participates in Molecular Recognition and Interactions between Binding Partners-Contributes to Enthalpic or Entropic Stabilization Water is Not Just and Inert Environment but an Integral and Active Component of Biomolecular Systems with Both **Dynamic and Structural Roles**

WATER IN THE COSMOS

Water on Planets: Mercury, Venus, Earth, Moon, Mars Jupiter, Saturn, Uranus, Neptune & Pluto Water Has Been Discovered on Icy Moons of: Jupiter: (Europa, Io, Ganymede and Callisto); **Saturn : (Titan and Enceladus); Uranus: (Ariel, Umbriel and Miranda) Neptune: (Triton- - Water/Ammonia Ocean) Pluto (Charon-Ocean beneath Water Ice Crust)** Comets: Halley,67P (0.4 g/cc);Temple-1 (0.6 g/cc) Water-Bearing Asteroids: 24 Themis, Ceres, Vesta Liquid Water and Ice, Energy, Biogenic Elements and Organics Co-Exist All Across Our Solar System

LIFE ON EARTH **Microbial Extremophiles Inhabit: Cold Regimes:** Polar Ice Caps & Glaciers Hot Regimes: Geysers, Fumaroles, Deep Hot **Crustal Rocks & Hydrothermal Vents** Acidic, Hyperalkaline & Hypersaline Pools: Blood Falls, Owens Lake & Lake Untersee **High Radiation:** Spent Nuclear Fuel Rods High Pressure: Lake Vostok, Deep Sea Trench Hard Vacuum: MIR; International Space Station May Inhabit Comets/Ice or Oceans of Planets/Moons

Perspectives in Astrobiology Evidence for Life *Biomolecules*

Molecules produced by Complex Metabolic Pathways in Living Organisms

Small: Chiral Amino Acids, Nucleobases, Sugars, Lipids, Metabolites, Fatty Acids

Large: DNA, RNA, ATP, Proteins, Enzymes, Kerogen & Pigments (Chlorophyll, Carotenoids)

Large Biomolecules & Chiral Amino Acids Not Formed by any Known Abiotic Mechanisms: Provide Conclusive Evidence for Life

Perspectives in Astrobiology Evidence for Ancient Life in Meteorites *Chiral Amino Acids*

L-alanine H NH₂ COOH COOH

Figure 1. Chirality of levo- (L-) and dextrorotary (D-) mirror-image enantiomers of alanime.

All Protein Amino Acids are L-After Death Amino Acids Racemize & Then Decompose Aminos Absent in Meteorites Are Same ss MIssing in Ancient Fossils

Protein amino acids italics-not detected (-) in meteorites	Living bacteria ¹⁰									
					Fossils		Carbonaceous meteorites ¹²			
	Micro cystis Wt %	E. coli Mol/ ALA	Salm. pull Mol/ ALA	Salm. senf Mol/ ALA	Fl y Amber Mol/ GLY	Hadro saur Mol/ GLY	Murchison	Murray ppb	Orgueil ppb	Ivuna ppb
D-Alanine ALA	-	-	-	-			720	617	69	82
L-Aspartic Acid ASP	12.0	1.01	1.00	1.00	0.23	0.77	342	65	54	146
D-Aspartic Acid ASP	-		-	8 - J			100	51	28	30
L-Glutamic Acid GLU	12.3	1.14	1.11	1.14	0.57	0.67	801	261	61	372
D-Glutamic Acid GLU	-		-	-			537	135	15	8
Glycine GLY	8.7	0.93	1.02	0.96	1.00	1.00	2919	2110	707	617
Arginine ARG	4.4	0.51	0.48	0.52	-		-	-	-	
Histidine HIS	1.0	0.18	0.21	0.19	-	3. 	-	-	1.75	
Isoleucine ILEU	5.0	0.55	0.51	0,55	-	.π.	-	-		(.
Leucine LEU	8.2	0.83	0.78	0.78	-	1	1.9 Nmol/g	-	(). 	1.
Lysine LYS	4.4	0.56	0.59	0.56	-	1 (H)		-		-
Methionine MET	1.9	0.31	0.37	0.23	-	-	-	=	-	-
Phenylalanine PHE	3.8	0.34	0.33	0.33	-	-	-		-	-
Proline PRO	4.9	0.25	0.26	0.28	-	-	13 Nmol/g	-	-	1941
Serine SER	6.6	0.41	0.48	0.43	0.56	0.91	4.7 Nmol/g	-	343	1.4
Threonine THR	6.6	0.48	0.50	0.48	-	0.41		-	-	24
Tryptophan TRY	0.04	0.05	0.05	0.04	-	- 4	1	-	-	-
Tyrosine TYR	3.4	0.12	0.15	0.08		-	2	-	-	1
Valine VAL	6.5	0.73	0.66	0.75		0.24	2	2	12	725
			N	onprotei	n amino a	icids				
a-Aminoisobutyric AIB	-		-	-	-	-	2901	1968	39	46
y-Aminobutyric y-ABA	-		Π.	-	-		1331	717	~600	628
Isovaline D,L- IVA	-	-	-	-	-	°	3359	2834	<194	<163

Perspectives in Astrobiology Search for Life on ExoPlanets *Biosignatures in Atmospheres*

Spectra of Methane, Nitrous Oxide & Ammonia Produced Mainly by Bacteria on Earth

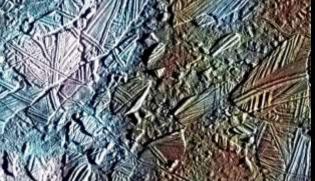
Molecular Oxygen (O₂) is Very Reactive and Released by Photosynthesis: O₂ Cannot Remain for Long Periods in Equilibrium in Planetary Atmospheres *Molecular O*₂ on Earth Produced by Life

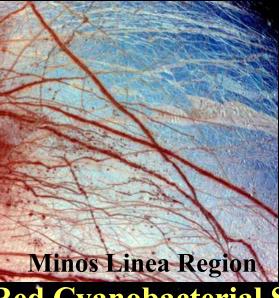
Water on Hot Planets **MERCURY** and **VENUS 2014: NASA Messenger Neutron Spectrometer Confirms Water Ice** & Dark Frozen Organics in **Kandinsky & Prokofiev Craters** at North Pole of Mercury 1961-2011: Russian Venera, ESA Venus Express, & Magellan Probes find Water, H₂SO₄, Oxygen, Ozone (H₂S - SO₂) & (H₂S -COS) in Layers (a)58-70 km (0-90 °C) where Earth' **Acidophiles Could Grow in Droplets**

Water, Snow & O₂ on Mars 2001 NASA Odyssey γ-ray **Spectrometer finds 95% pure** Water Ice in Planum Boreum ~3 million km³ in N. Cap 5/18/1979 – Water Snow on **Utopia Planitia Viking2 Site** 2002-Molecular Oxygen in Mars Atmosphere at levels above photolysis of CO, **2011- Recurring Slope Lineae Provide Evidence of Present Day Liquid Water on Mars**

Snow on Mars at Viking 2 Lander Site (48N, 226W) (211093) May 18, 1979 12:50:43Z Detector Temperature -18.10 C

Liquid Water Ocean and 125 km Water and Ice Geysers on South Pole of Europa





K. Refwritzt, Soatneed Rewarth Institute

Red Cracks in Crustal Ice: Evidence for Liquid Water Ocean & Life? on Europa

Conamara Chaos (70X30 km)

Herminiimonas glaciei 3042 M Greenland

Carnobacterium pleistocenium Fox Tunnel, Alaska

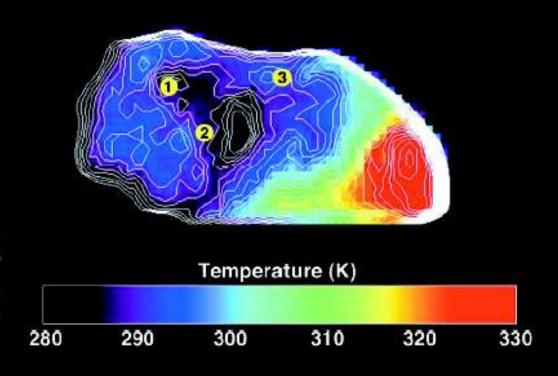
Red Cyanobacterial Stromatolites Discovered in 2008 International (US/Russia/Austria) Lake Untersee Astrobiology Expedition

Dawn: Liquid Water & Organics on Asteroids Ceres & 4 Vesta

Ceres-Rocky Core with Icy Mantle
(~200 million cubic km of water)4 Vesta-Cornelia Crater with
Gullies & RSL Shows Liquid
Water Flow ~ HED Meteorites

Thomas, P. C. *et al.* "Differentiation of the asteroid Ceres as revealed by its shape". *Nature* 437, 224 (2005).
Scully, J. E. C.; et al. "Sub-curvilinear gullies interpreted as evidence for transient water flow on Vesta". *45th Lunar and Planetary Science Conference (2014)*.

Geysers & Liquid Water Seas on Saturn's Moon Enceladus

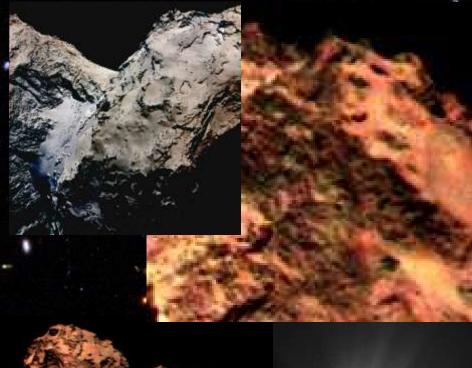

Cassini Mission Finds Water Ice Geysers Tiger Stripes near South Pole of Enceladus Temperature of Tiger Stripes ~ 273 K

Cassini Gravity Data indicates vast Regional Subsurface Sea of Liquid Water at Depth of 30 to 40 km up to 50° S Latitude Less at al. "The Gravity Field and Interior Structure of Enceladus" Science 344, 78-80, (2014)

Molecular O₂ in Atmospheres of Europa, Enceladus & Rhea Interpreted as from Ice Decomposition by Magnetospheric Plasma but could be from Photosynthetic Microbes

Liquid Water, Ice & Jets on Nucleus of Comet 9P/Temple 1

Sunshine et al. Exposed Water Ice Deposits on the Surface of Comet 9P/Tempel 1 Science 311, 1453 2006



Deep Impact Thermal Map Shows Water on Nucleus of Comet 9P/Temple1 & Flaring at Orbit of Mars – Possibly Ejecting Ice, Cosmic Dust, Diatoms & Cyanobacterial Cells

O₂ & Jets of Water Ice on Comet 67P/Cheryumov-Gerasimenko

Smooth Blue Ice & Jets on Comet 67P/Cheryumov-Gerasimenko

Molecular Oxygen detected in Comet Coma & Color images showing Red, Pink, Green and Blue-Green areas Support Hypothesis of Active Growth of Cyanobacteria Photos Credit: ESA OSIRIS Camera Team

Life in Polar Caps & Ice Caves Suggest Life Possible in Comets

2um 7500X


Diatoms from 2827 M Vostok Ice Core & Motile Bacteria from Kverkfjöll Ice Cave, Vatnajökull Ice Cap, Iceland.

Water/Organics on Outer Planets Uranus and Neptune/Triton

Uranus 20 AU T 40K-4000K Density 1.27 g/cm³ Neptune & Triton 30 AU *Credit: NASA/Hubble/Voyager*

Neptune 30 AU; Core T < 800K Pressure < 20 kbar Triton Diameter 2,705 km; Density ~ 2.066 g/cm³ Triton Surface Water Ice, Nitrogen & Methane Subcrustal Liquid Water Oceans Indicated

DAWN DISCOVERS Water Ocean/Organics on Pluto/Charon

New Mountains, Polygons & Ice Flows on Pluto indicate Oceans Red&Orange colors from Tholins or Pigments. Sub-Ice Oceans and Cryovolcanism on Charon *Credit: NASA/GSFC;JHUAPL;SwRI*

CARBONACEOUS METEORITES

Primitive Chondrites (Only 8 Known Groups) with Elemental Abundances ~ Solar Photosphere CI & CM ~ 3%-22% Deuterium Enriched Water and ~ 4 Wt% Extraterrestrial Carbon Volatiles & Organics Indicate Heating < 200 C; Organic Grains in Matrix similar to Kerogen or Coal Have Extraterrestrial Nucleobases & Biomolecules (Murchison: Uracil $\delta^{13}C = +44.5\%$; Xanthine = +37.7‰) Aqueous Alteration of Minerals & D/H Ratio Prove Liquid Water on CI&CM Meteorites **Parent Body Probable CI-Asteroids or Comets**

PHOTOSYNTHETIC PIGMENTS

Chlorophylls, Carotenoids & Phycobilin Pigments of Photosynthetic Organisms Have Never Been Detected in Carbonaceous Meteorites

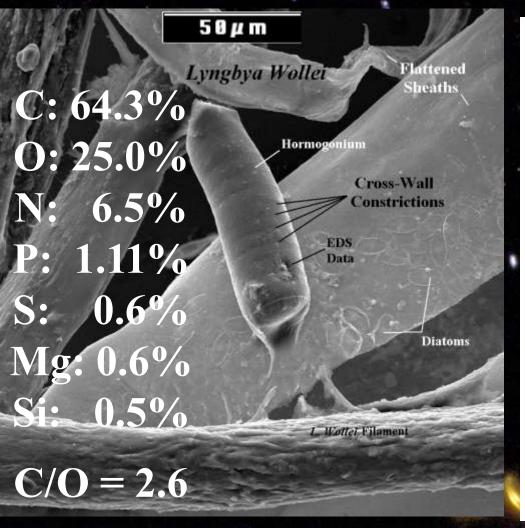
Porphyrins, Pristane & Phytane (C19 & C20): Diagenetic Breakdown Products of Chlorophyll Phytol Chain Found in CI and CM Meteorites Isoprenoid Hydrocarbons With No Known Abiotic Production Mechanisms

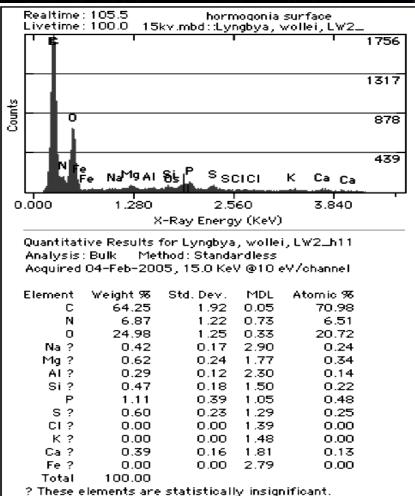
Biomolecular Evidence for Indigenous Photosynthetic Microbes on Parent Body Long before Arrival on Earth

METEORITE CONTAMINATION

Paradigm Invalidated: All Carbonaceous **Meteorites Contaminated by Earth Microbes Carbonaceous** Meteorites Are Missing: 12 of 20 Life-Critical Protein Amino Acids RNA & DNA Sugars: Ribose & Deoxyribose **2 Unstable Life-Critical Nucleobases Absent:** Cytosine - Uracil: Half-Life 17,000 Years Thymine -Xanthine: Half-Life 1.3 Ma @ 0 C; pH 7 **Contamination** by **Modern Microorganisms Must Also Introduce These Biomolecules**

Microfossils in Carbonaceous Meteorites: Evidence of Life Yellow: Microfossils Found at MSFC; Red: NOT Found

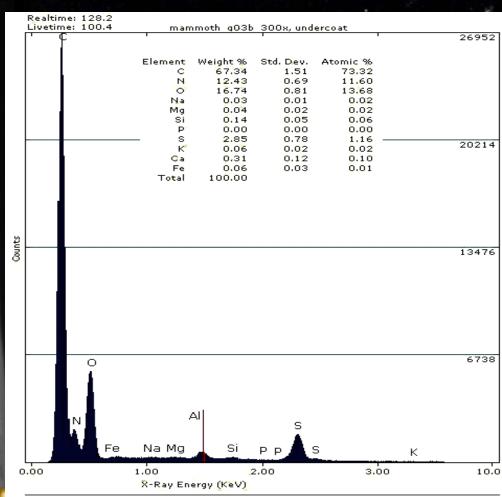

- CI1: Alais, Ivuna, Orgueil
 - C2 Ungrouped: Tagish Lake
 - CM2: Murchison, Mighei, Murray, Nogoya,Cold Bokkeveld, Bells CR3: Acfer 324
 - CK4: Karoonda
 - CO3: Rainbow, Dar al Gani (DaG) 749, Kainsaz
- CV3: Efremovka, Allende
 - C: Carbonaceous UnGrouped: Pollonaruwa, Sutter's Mill
 - **Stony Chondrites, Achondrites and Iron Meteorites**
- L4: Nikolskoye, Barratta; L/LL6: Holbrook
 - Diogenite: Tatahouhine
 - Iron: Henbury; Thiel Mountains, Antarctica (TIL 99001-99018)

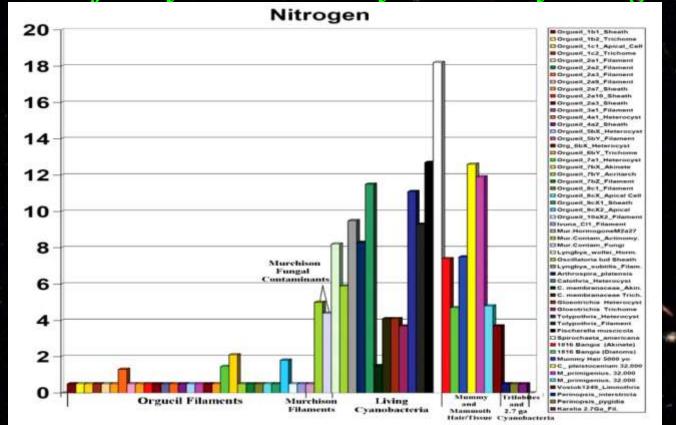

Microfossils in Carbonaceous Meteorites Contamination Control & Detection

- Study only Uncoated, Freshly Fractured Interior Surfaces; Stones Stored at -80 °C when not in Use
- Fusion Crust and Old Fractures in Stones Avoided
 All Containers, SEM Mounts & Tools Flame Sterilized
- Null Controls -Silicon Wafers & Apollo Lunar Samples
- NASA FESEM Energy Dispersive X-Ray Spectrometer Calibrated Using Element and Mineral Standards

Nitrogen & Beam Damage Used to Detect Contaminants

Nitrogen & Beam Damage Distinguish Living Lyngbya wollei Cells from Ancient Fossils




N in Modern Cells~(2-20%);C/O =2.6; Beam Damage

Nitrogen & Beam Damage in Siberian Pleistocene Mammoth Guard Hair

100µm leistocene Mammoth Guard Hair 32.000 BF C: 73.4% **O: 13.6%** IDS SPOT N: 11.6% S: 1.16% Ca: 0.10% Mg: .02% C/O = 5.4

Distinct EDS Nitrogen Peak in 32,000 Yr Old Mammoth Hair N = 11.6% Atomic Nitrogen for Distinguishing Recent Bio-Contaminants from Indigenous Microfossils Nitrogen is present in every DNA & RNA Molecule and in All Amino Acids of every Protein & Enzyme in Every Living Cell

Cells of All Living or Pleistocene Microorganisms Typically Contain (~2 to 20%) Nitrogen. NASA EDS Detects N at 0.5% Level or Less EARLY DISCOVERIES Organics & Microfossils in Alais & Orgueil 15/03/1806 - Alais; 14/05/1864 - Orgueil (Only 9 CI1)

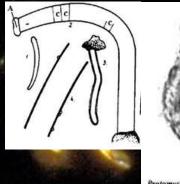
1834-Berzelius Finds Water & Organic Chemical in Alais & Suggests Extraterrestrial Life

1864-Pisani & Cloëz find Carbon, water & Organics ~ Coal; Orgueil Find Stones Disintegrates in Water

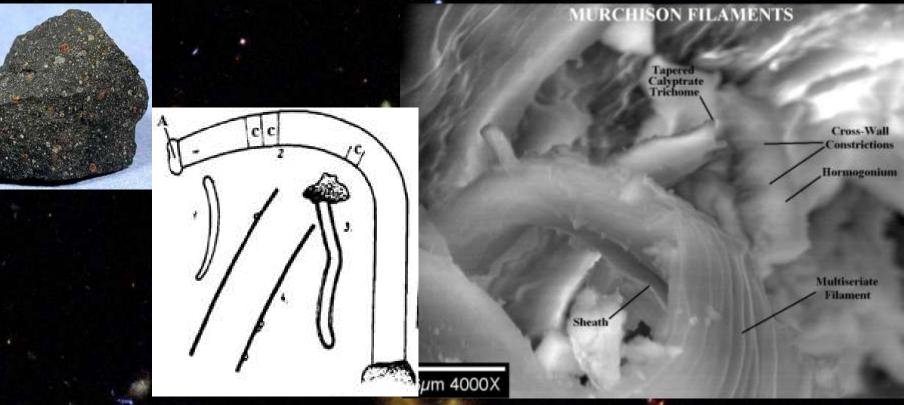
1962 - Nagy Organized Elements

1963- Palik Finds Cyanobacteria

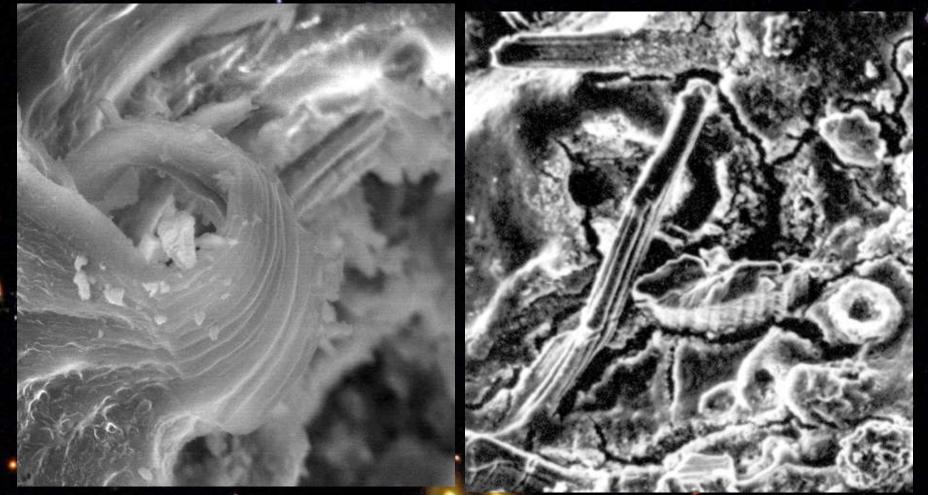
1963-Palynologist Timofejev finds Extinct Acritarchs in Mighei CM2


1997 - Rozanov & Hoover Detect Cyanobacteria & Acritarchs in Orgueil CI1 and Murchison CM2

Alais Cl1

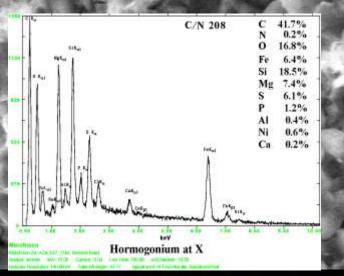

Orgueil Cl1

Protomyctosphaeridium marmoratus Timofejew sp. n.



RECENT DISCOVERIES Microfossils in Carbonaceous Meteorites Sept. 18, 1969, 10:59 A. M. – CM2 Carbonaceous Meteorite Falls in Murchison, Australia (>100 kg; Sargeant-Comet 15P/Finlay)

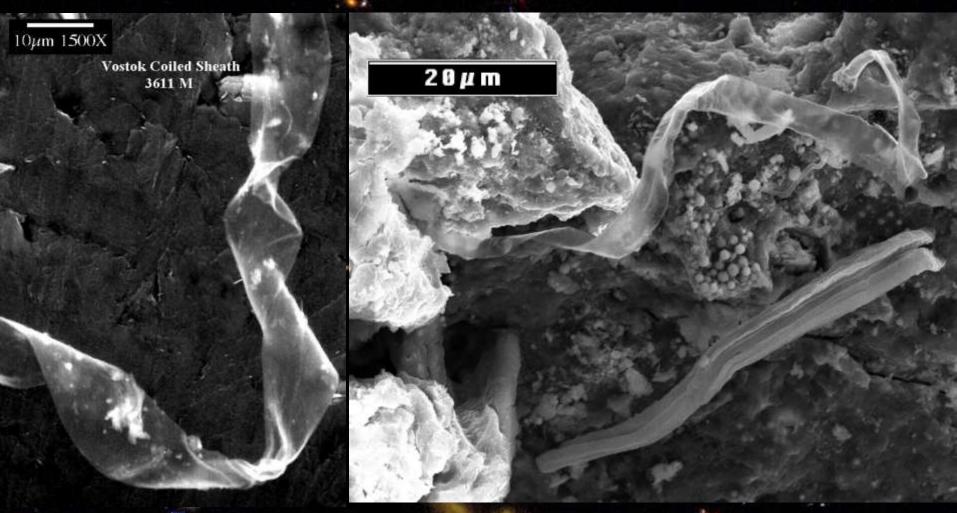
Murchison Contains Large Uniseriate & Multiseriate Trichomic Filaments with Hormogonia, Calyptrate Apical Cells & Sheaths with Cross-Wall Constrictions ~ *Phormidium tenue*, *Nostoc* sp. and *Microcoleus chthonoplastes*


Microfossils in Carbonaceous Meteorites Murchison Meteorite Cambrian Khubsugul Phosphorite

Microcoleus, Phormidium & Nostoc sp. in Murchison ~ Academican Rozanov' Siphonophycus in Khubsugul Cambrian Phosphorite

Mineralized *Nostocacean* Cyanobacteria Filament in Murchison CM2 Meteorite

Hollow Sheath


Akinete

Embedded Filament Hollow Sheath, Emergent Trichomes & Coiling Hormogonia (H) with Cross-Wall Constrictions (C) and Akinetes

Akinete

Sum

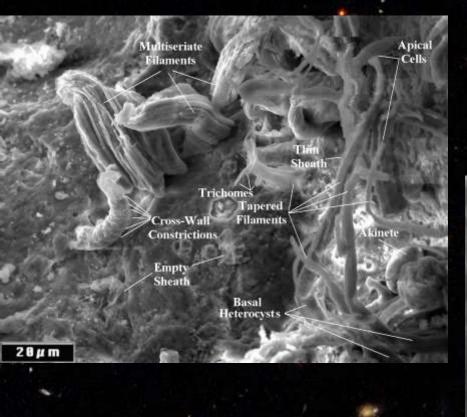
EVIDENCE OF *Oscillatoriacean* **MOTILITY IN FILAMENT REMAINS IN VOSTOK ICE & ORGUEIL**

Hollow Spiral, Flattened, Carbonized Sheath in Deep (3611 M) Vostok Ice and Orgueil CI1 Meteorite **RECENT DISCOVERIES** Specialized Nitrogen Fixation Cells In Orgueil Apical, Intercalary and Basal Heterocysts

Heterocysts Perform Nitrogen Fixation Conversion of Di-Nitrogen Gas N₂ Molecules from Atmosphere into organic nitrogen (NH₃ or NO₂) molecules usable by cells.

Nitrogen Cycle Essential to all Life on Earth

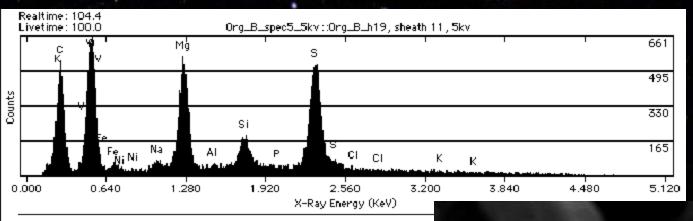
Heterocystous Calothrix in Orgueil


Living *Calothrix sp.* (Little White River) with Heterocyst. & Tapered filaments in Orgueil with Basal Heterocysts

Cyanobacteria w/ Apical & Intercalary Heterocysts in Orgueil (cf. *Nostoc* sp. & *Cylindrospermum* sp.)

1 *u* m

20µm


Filaments, Akinetes & Acritarchs in Orgueil

Tapered polarized filaments in Orgueil with funnel shaped apices and bulbous basal heterocysts, akinete and mineralized acritarch *Leiospheridia sp.*

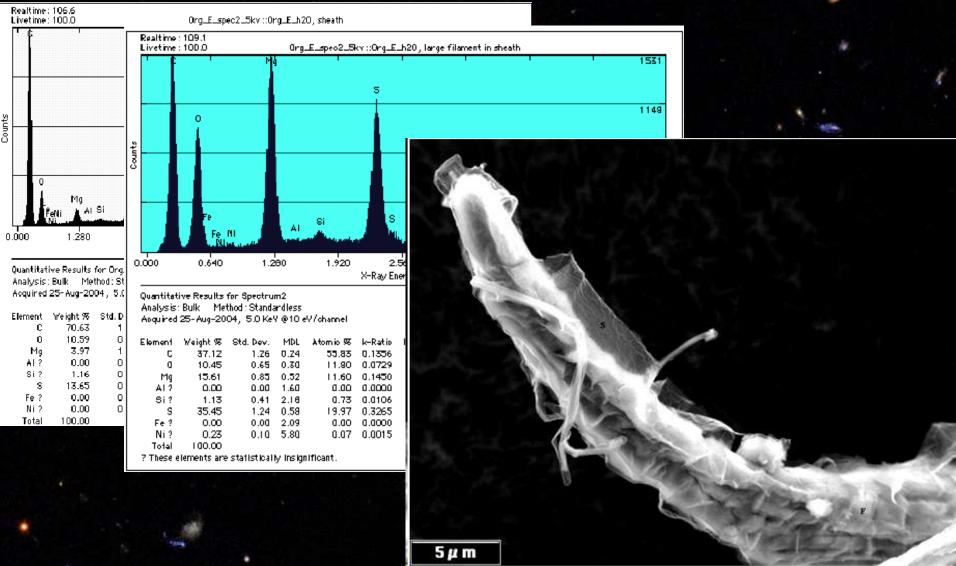
Nitrogen Absent in Embedded Carbonized Filament With Apical Cell in Orgueil

Quantitative Results for Org_B_h19, sheath 11, 5kv Analysis: Bulk Method: Standardless Acquired 21-Jul-2004, 5.0 KeV @10 eV/channel

Element	Weight %	Std. Dev.	MDL	Atomic %	k-Ratio	Intensities
С	27.28	1.39	0.34	45.78	0.1036	3010.8
N ?	0.00	0.00	3.39	0.00	0.0000	0.2
0	11.77	0.77	0.43	14.82	0.0871	3347.1
F ?	0.00	0.00	2.40	0.00	0.0000	0.2
Na ?	1.34	0.48	2.67	1.17	0.0117	395.9
Mg	10.27	0.70	0.88	8.52	0.0957	2984.1
AL?	0.80	0.32	3.55	0.60	0.0073	190.5
Şi	5.46	1.18	1.51	3.92	0.0520	1161.0
Ρ?	0.95	0.38	4.66	0.62	0.0088	151.6
S	34.14	1.41	0.90	21.46	0.3204	4271.7
CI ?	0.00	0.01	3.94	0.00	0.0000	0.2
Κ?	0.01	0.02	6.35	0.00	0.0001	0.2
V.	6.44	1.21	1.16	2.55	0.0312	1014.7
Fe ?	1.53	0.55	3.46	0.55	0.0087	312.7
Ni ?	0.00	0.00	2.64	0.00	0.0000	0.2
Total	100.00					

5*µ* m

FIMBRIAE OF CYANOBACTERIA IN ORGUEIL CI1 CARBONACEOUS METEORITE

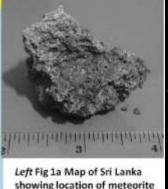

Fimbriae

200

Lophotrichous tufts (20-40 nm) helical fimbriae @ 80kX in Orgueil -Motility in Many G⁺ Bacteria & Oscillatoriacean cyanobacteria

2 µ m

EDS Data of Sheath and Filament in Orgueil



Epsomite infilled Cyanobacterial Filament (O/C=0.2) with Emergent Trichomes and Kerogenous Sheath (N< 0.3%; O/C=0.1)

Polonnaruwa Meteorite

Yellow Green Fireball Seen: NE - SW Trajectory Polonnaruwa, Sri Lanka: 29/12/2012 at 6:30 P.M.
(13:00 GMT). Low Density (0.6 g/cc) Black Stones Enhanced in Iridium & Deuterium Fell in Rice Fields, Aralaganwila (N 7º 52' 59.5"; E 81º 9' 15.7")

Right Fig 1b Piece of meteorite

Polonnaruwa Stones Unlike Earth Rocks & Known Meteorites - May Represent New Group of Carbonaceous Meteorites

Polonnaruwa Meteorite: Mineralogy & Petrology

Highly porous poikilitic textures of isotropic Silica-rich Plagioclase-like hosts with Shock Fractured Inclusions of: Ilmenite Fe²⁺TiO₃, Fayalitic Olivine Fe₂²⁺SiO₄, Quartz SiO₂, and Zircon ZrSio₄

Bulk minerals include accessory Cristobalite, Hercynite, Anorthite, Wuestite, Albite, and Anorthoclase.
High pressure Olivine polymorph Wadsleyite (Mg,Fe₂²⁺) 2(SiO 4) Implies Extraterrestrial Shock Pressure of ~20 GPa – Stable in Earth Upper Mantle @ 425 km

Oxygen Isotopes of Polonnaruwa Stones Independent Laser Fluorination Measurements of Triple Oxygen Isotopes by Prof. Dr. Andreas Pack University of Göttingen and Prof. Eizo Nakamura Okayama University

Produced Consistent Results with Δ¹⁷O Far Away from **Terrestrial Fractionation Line**

Measurement	δ ¹⁸ 0	δ ¹⁷ 0	$\Delta^{17}0$
Prof. Dr. Andreas Pack	17.816	8.978	-0.335
Prof. Eizo Nakamura - Run 1	20.84	10.60	-0.328
Prof. Eizo Nakamura-Run 2	20.75	10.59	-0.296

Oxygen Isotopes of Polonnaruwa Stones

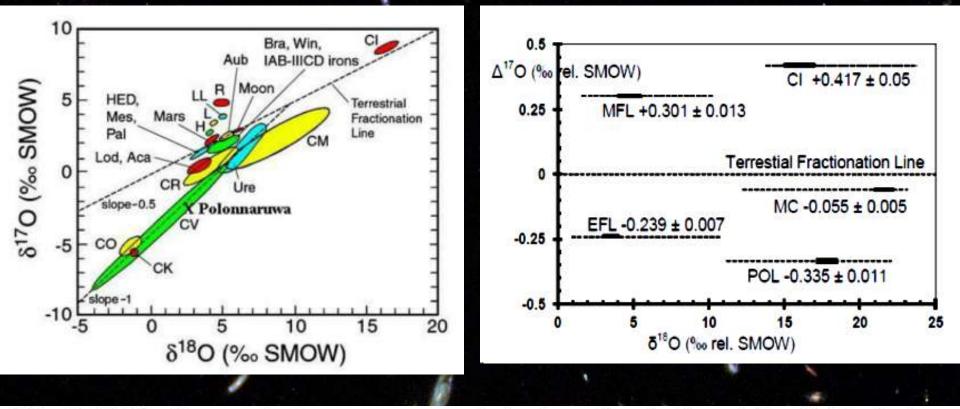
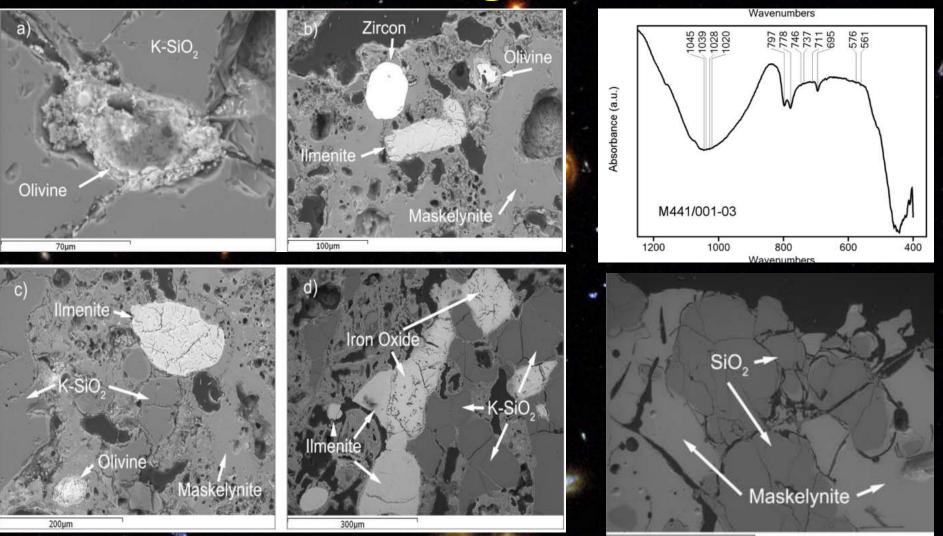




Fig. 1. Triple Oxygen Isotope measurements by laser fluorination at the Stable Isotope Laboratory of the University of Göttingen in Germany by Prof. Dr. Andreas Pack revealed the Polonnaruwa samples were far away from the Terrestrial Fractionation Line and could not be logically considered typical Earth rocks.

Shocked Grains & High Pressure Minerals

Shock Fractured Zircon & Quartz Grains. FTIR Absorption at 778 cm⁻¹ & 797 cm⁻¹ of Maskelynite

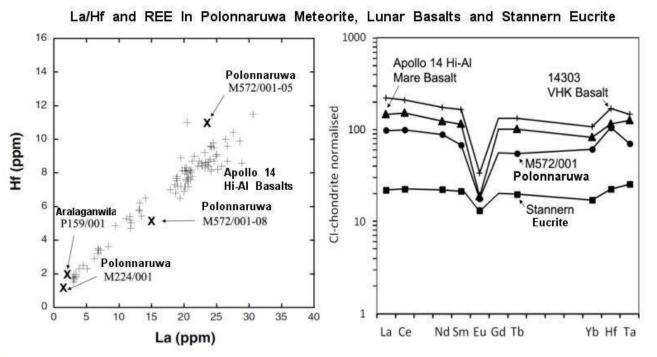
Polonnaruwa Th/Sm & Th/Al₂O₃ Data

Anders, E., Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim.Acta 53. Korotev, R. L. Lunar geochemistry as told by lunar meteorites. Chemie der Erde 65 (2005) 297–346

ICP-OES Ratios ~ CI Meteorites & KREEP

Bulk Chemistry at Cardiff by Inductively Coupled Plasma - Optical Emission Spectroscopy

Table 3

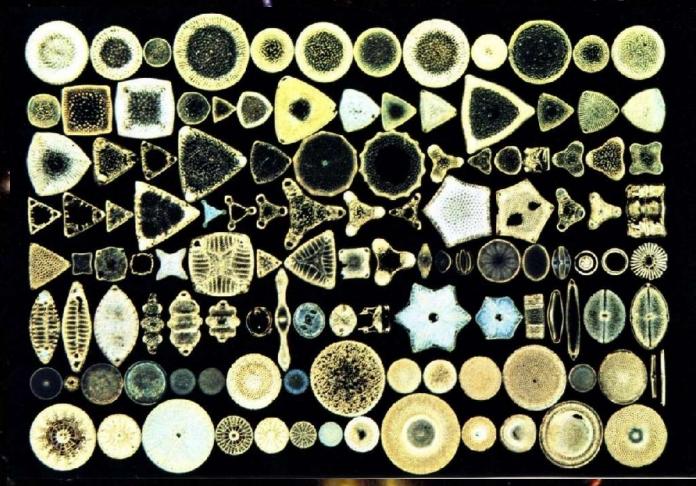

Average bulk compositions of samples P159/001, M224/001, M572/001 (two samples) and M441/001 together with comparative compositions taken from the literature

	S1	S1 – M572/001-05, S2 – M572/001-08, S3 – M441/001, S4 –P159/001, S5 – M224/001			S6 – Fusion Crust MIL 05035, S7 Bulk Recon, S8 – Bulk Rock		(NWA 1664), S11, S12 - High K/Low					
	S1	S2	S3	S4	S 5	S6	S 7	S 8	S9	S10	S 11	S12
SiO ₂	49.74	49.42	51.34	60.65	65.46	45.50	47.0	48.4	51.10	49.82	66.41	65.36
Al ₂ O ₃	11.90	16.82	13.23	0.00	0.19	9.61	9.26	8.85	13.38	13.17	17.87	18.96
Na ₂ O	1.62	1.62	3.91	0.54	0.54	0.32	0.26	0.21	0.20	1.21	0.56	0.61
MgO	1.39	0.60	0.99	4.97	3.98	5.83	7.44	7.79	8.34	7.72	0.21	0.19
K ₂ O	7.41	1.61	6.44	22.69	22.69	0.05	0.03	0.01	1.41	0.06	5.80	3.95
CaO	4.34	1.68	2.38	4.90	5.18	11.9	11.8	12.1	10.91	10.82	4.99	7.04
FeO	12.68	12.16	5.56	0.35	0.17	22.5	22.0	20.7	13.17	15.52	1.97	1.96
TiO ₂	0.83	1.00	0.67	0.00	0.00	1.99	1.44	0.90	0.73	0.72	1.04	1.11
MnO	1.03	0.13	0.00	1.29	1.16	0.36	0.32	0.33	0.47	0.54	0.08	0.05
Cr ₂ O ₃	na	na	na	na	na	0.30	0.33	0.30	0.45	0.43	0.26	0.49
P ₂ O ₅	na	na	na	na	na	0.05	0.05	0.02	0.01	0.07	0.01	0.00
SO ₂	na	na	na	na	na	0.05	0.11	na	na	na	na	na
Total	92.09	85.26	84.52	97.45	101.44	98.5	100	99.3	100.17	100.08	99.20	99.72
Mg#	16.38	8.05	24.19	96.23	97.61	31.6	37.8	40.2	28.02	28.74	24.63	39.20

Na - not analysed. S1 – M572/001-06, S2 – M572/001-08, S3 – M441/001-03, S4 –P159/001-05, S5 – M224/001-03, S6 – Fusion Crust (MIL 05035) (Thaisen and Lawrence⁴⁷, 2009), S7 – Bulk rock composition of MIL 05035 (Liu et al.⁴⁸, 2009), S8 – Bulk rock composition of MIL 05035 (Joy et al.⁴⁹, 2009), S9/S10 – NWA 1664 Core and Rim mafic glass (Barrat et al.⁴³, 2009) S11/S12 – NWA 1664 High K/low K felsic glass (Barrat et al.⁴³, 2009).

REE Patterns ~ High K & High Al Glasses in Lunar and 4 Vesta -Europium – 0.7 to 0.9 ppm (~Europium Anomaly Lunar Highlands) Iridium ~1-7 ppm (~10⁴ times that of Terrestrial Crustal Rocks)

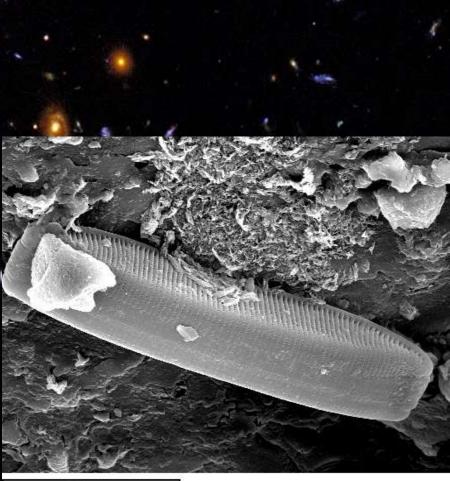
Polonnaruwa Cardiff & JINR Data



Meteorite	Rb	Re	U	
Orgueil CI1	3.14	-	-	
Murchison CM2	3.57	-	-	
Polonnaruwa 141	439	3.47	-	
Polonnaruwa 162	158	1.55	1.06	
Polonnaruwa 162	378	4.02	0.39	
Polonnaruwa Crust	323	4.44	0.043	

Hf/La & REE Plots for Aralaganwila/Polonnaruwa, Lunar Basalts and Stannern Eucrite from Vesta

Fossil Diatoms


Richard B. Hoover – Those Marvelous Myriad Diatoms, National Geographic, June, 1979

Taxonomy of Diatoms based entirely on Shell Morphology *Centrics: Radial Symmetry - Pennates: Bilateral Symmetry*

Marine Diatoms in Polonnaruwa Meteorite

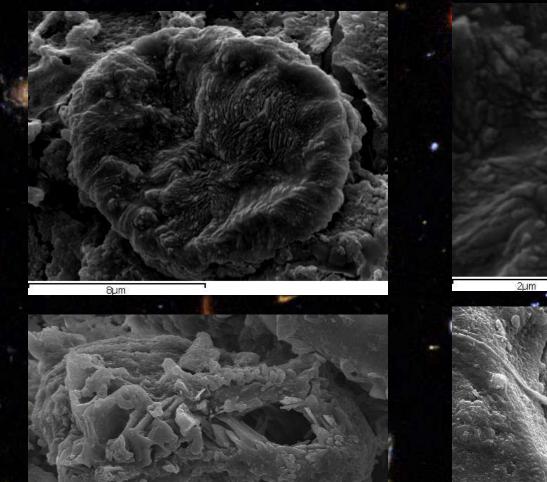
Complete Frustules of *Hantzschia amphioxys* and Araphid Marine Pennate - Ardissonea robusta

20µm

Marine Planktonic Diatoms in Polonnaruwa

40µm

Embedded *Aulacoseira ambigua* Filament in Polonnaruwa & Cells from Polar Ocean

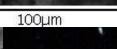

Strange Diatom in Polonnaruwa Meteorite

FEI Quenta 600 FEG 7.0 KV EN Mag 5000X MSFC Material Diagnostics Facility

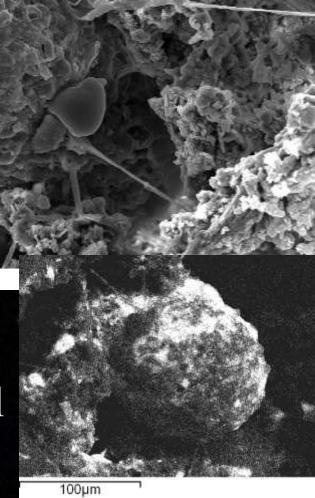
UNKNOWN-Possible New Family of Diatoms

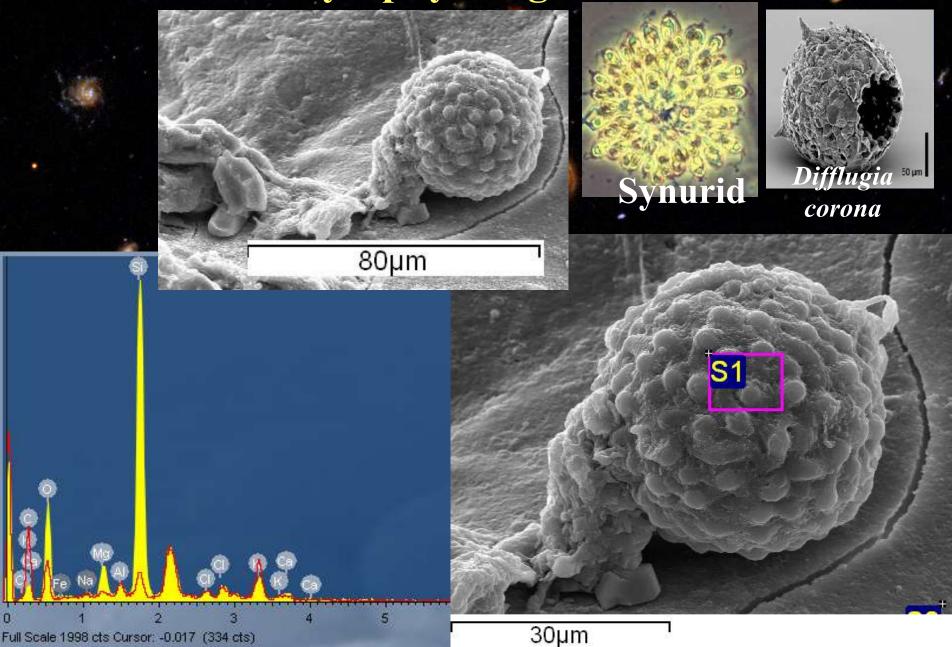
5µm

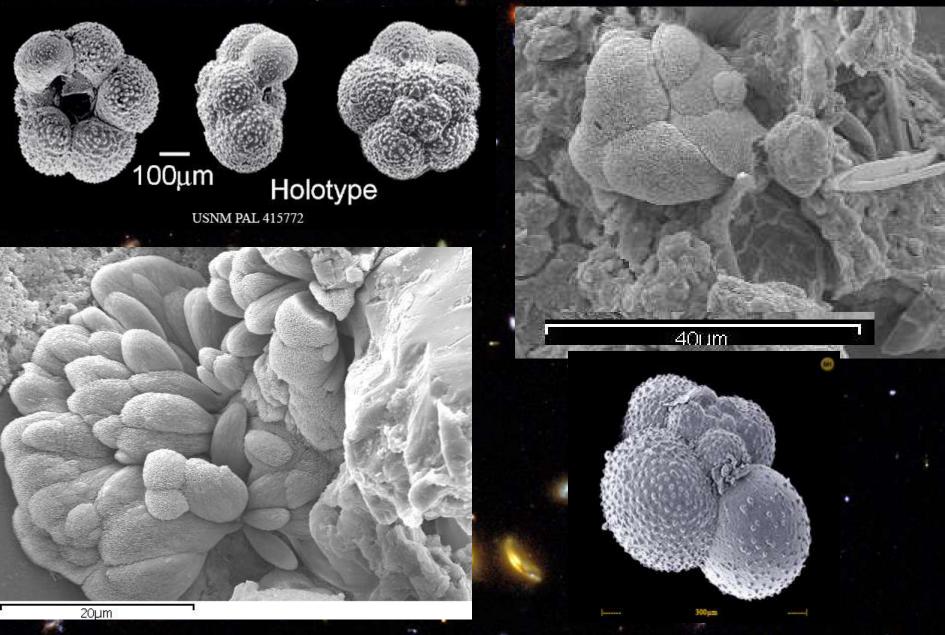
Acritarchs in Polonnaruwa Meteorite

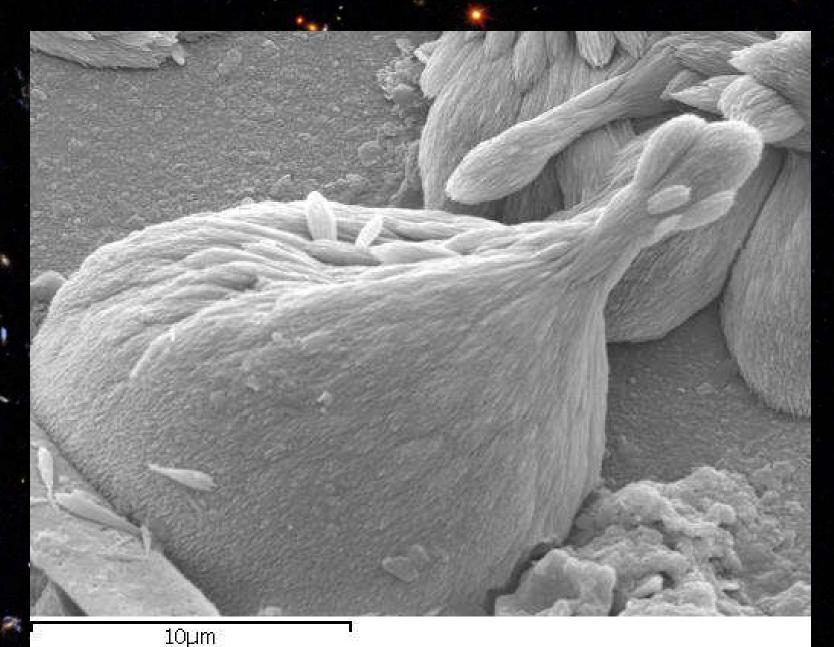


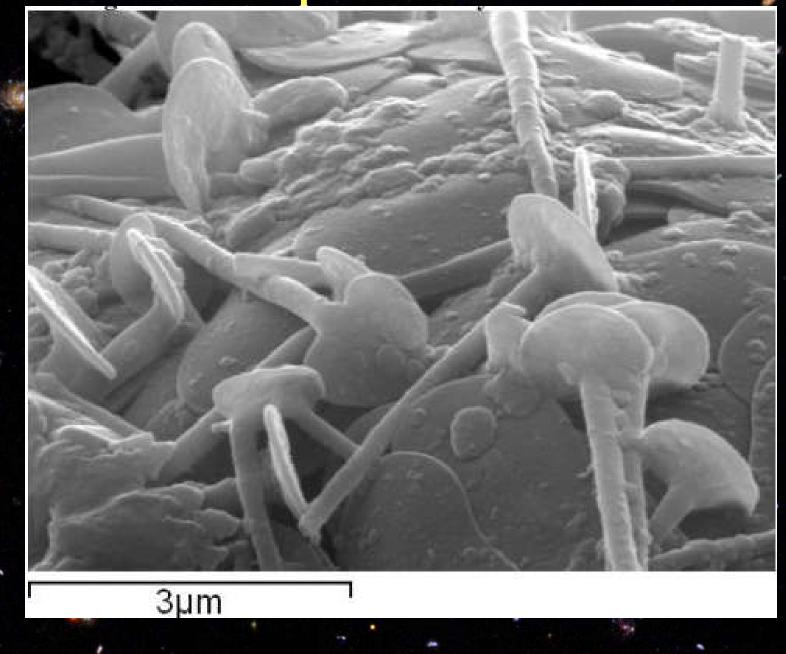
^{30µm} Kerogen - *cf. Leiospheridia sp.* C 84%; O 14%


Extinct Hystrichosphere in Polannaruwa Meteorite

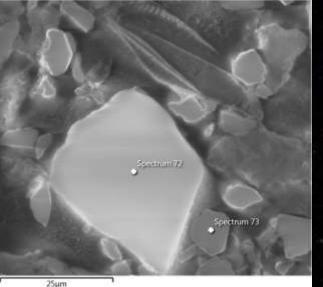


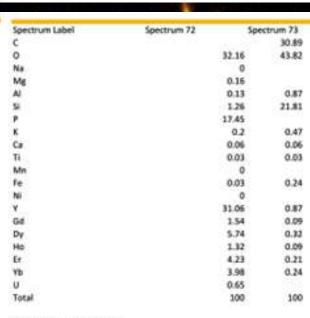


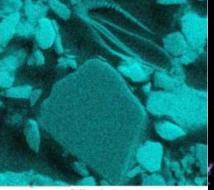

Silica Scaled Chrysophyte algae or Testate Amoeba


Globigerina sp. Foraminifera in Polonnaruwa

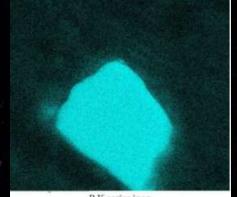
Testate Amoebae cf. Difflugia sp.

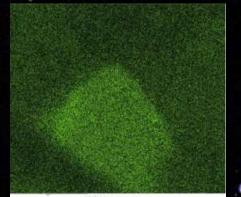


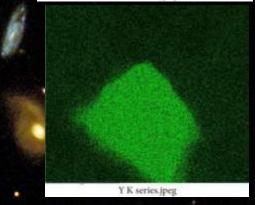

Testate Amoeba Spines & Plates in Polonnaruwa

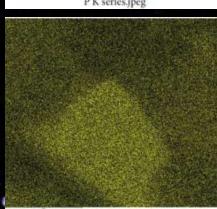


REE & Heavy Metals in Polonnaruwa

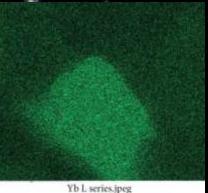

Pol-B1_q11_2kx




O K series.jpeg



P K series.jpeg



Gd L series.jpeg

Ho L series.jpeg

Percentages are in weight%

Perspectives in Astrobiology: Microfossils in Carbonaceous Meteorites CONCLUSIONS

Requirements for Life (Water, Energy & Biogenic Elements) Co-Exist on all Planets, Moons & Comets

Carbonaceous Meteorites Contain 8 of 20 Protein Amino Acids and 3 of 5 DNA Nucleobases & Indigenous Microfossils

Absence of Biomolecules in Stones and Nitrogen in Filaments proves these Microfossils are Ancient and Indigenous - NOT MODERN BIO-CONTAMINANTS

Conclusive Evidence for Extraterrestrial Life

Perspectives in Astrobiology: Microfossils in Carbonaceous Meteorites Future Research on Polonnaruwa Meteorite Radiochemical Neutron Activation Analysis for Precise Determination of Elements for Comparison with Other Meteorites and Classification **Study Fractionation of Isotopes of Lithophiles** Lanthanides and Heavy Metals Measure Radionuclides and Noble Gas to Determine Cosmic Ray Exposure Age of Polonnaruwa Stones Measure Age of Zircons, SiC and Graphite Grains in Stones & Isotopes of C, Si & O in Fossils Unravel the Mysteries of the Polonnaruwa Stones

Perspectives in Astrobiology: Microfossils in Carbonaceous Meteorites ACKNOWLEDGEMENTS

Scanning Electron Microscopy – NASA/MSFC - Gregory Jerman Cardiff University: James Wallis, Nori Miyake, Max Wallis Paleontological Institute (RAS): E. A. Zhegallo Meteorite Samples Courtesy: Claude Perron & M. Rossignol-Strick-Musee d'Histoire Naturelle de Paris; Emile Ladier-Montauban Museum; P. Sipiera Planetary Studies Foundation & Field Museum, Chicago; William Birch, Victoria Museum, Melbourne **Discussions of Meteoritics, Bacterial Paleontology and Cyanobacteria** -Academician Alexei Yu. Rozanov, Astrobiology Institute, JINR Academician Eric Galimov, Director, Vernadsky Institute (RAS)

Academician Georgi Zavarzin & Ludmilla Gerassimenko- Institute of Microbiology (RAS); Rosemarie Rippka - Institut Pasteur, Paris