MICROPALEONTOLOGY INVESTIGATIONS AND NEUTRON ACTIVATION ANALYSIS OF CARBONACEOUS METEORITES Richard B. Hoover Astrobiology Lab, Athens State Univ., US **Buckingham Centre for Astrobiology, UK** Alexei Yu. Rozanov, Marina Frontasyeva and Sergey Pavlov Dept. of Neutron Activation Analysis & Appl. Res., **Frank Laboratory of Neutron Physics** JINR, Dubna, Russia JINNR-2016 -- May 25, 2016

MICROPALEONTOLOGY INVESTIGATIONS AND NEUTRON ACTIVATION ANALYSIS OF CARBONACEOUS METEORITES INTRODUCTION **Meteorites are Typically Classified on the Basis of Mineralogy, Structure, Physical Properties and Chemical Composition. Polonnaruwa has Abundant REE; Platinum** Group Metals(Ir, Ru, Re); Ti, W & U **Radiochemical Neutron Activation Analysis** is Powerful Tool for Study of these Meteorites

MICROPALEONTOLOGY INVESTIGATIONS AND NEUTRON ACTIVATION ANALYSIS OF CARBONACEOUS METEORITES INTRODUCTION **Environmental and Field Emission Scanning Electron Microscopy (ESEM & FESEM) with Energy Dispersive X-Ray Spectroscopy (EDS)** and 2D X-Ray Maps has Provided a Powerful **Tool to Search for Biological Remains in Uncoated Meteorites and Detect C & N to Distinguish Indigenous Microfossils from Post-Arrival Biological Contaminants**

CARBONACEOUS METEORITES

Class of Chondrites with 8 Known Groups Primitive Meteorites: Elements~Solar Photosphere CI & CM ~ 3%-22% Deuterium Enriched Water and ~ 4 Wt% Extraterrestrial Carbon **Volatiles & Organics Indicate Heating < 200 C; Organic Grains in Matrix ~ Kerogen or Coal** Have Extraterrestrial Nucleobases & Biomolecules (Murchison: Uracil $\delta^{13}C = +44.5\%$; Xanthine = +37.7‰) Aqueous Alteration of Minerals & D/H Ratio Prove Presence of Liquid Water on CI&CM Meteorites Probable Parent Bodies: Comets or C-Asteroids

Nitrogen & Beam Damage to Detect Recent Contaminants in Meteorites

Nitrogen @ 5% Indicates Recent Bio-Contaminant

Micropaleontology of **Carbonaceous** Meteorites **Fossils in Carbonaceous Meteorites Mainly Cyanobacteria.** Permineralized Carbon-rich **Sheaths with Size & Morphology of Many Known Genera & Species of Cyanobacteria & Acritarchs DIVERSE MODES OF REPRODUCTION: Distinctive Characteristics of Life** Septate Binary Fission & Cleavage **Multiple Fission (Baeocytes) Trichomic Fragmentation (Hormogonia) Resting Cells/Germination (Spores & Akinetes)**

Micropaleontology of Carbonaceous Meteorites CYANOBACTERIA ("Blue-Green Algae")

Oxygenic Photosynthetic Prokaryotes Photoautotrophs-Use H2O as Photoreductant & CO2 as Source of C for Energy & release Oxygen Some are Facultative Chemoheterotrophs and use PSII for *Anoxygenic Photosynthesis of H*₂S

Precise Size & Characteristics of Cells, Sheath, Trichome & Filament are Taxonomic Diagnostics Strong Biomarkers in Murchison CM2 and Orgueil CI1 Meteorites In Nature Only from Complex Metabolic Bio-Pathways Chiral Amino Acids with Moderate to Strong L-Excess Engel & Nagy, Nature, 296, 837, 1982; Engel et al. in Perspectives in Astrobiology, 2005.

Pristane (C₁₉H₄₀, Phytane C₂₀H₄₂, & NorPristane C₁₈H₃₈ Kissin, Geochm. Cosm. Acta, 67, 1723-1735, 2003 **Pristane --(2,6,10,14-tetramethylpentadacane) Phytane - (2,6,10,14-tetramethylhexadacane)** Pristane & Phytane-C19 & C20 isoprenoid hydrocarbons derived from phytol chain of the Photosynthetic Chlorophyll Biomolecules

NO MECHANISMS ARE KNOWN FOR ABIOTIC PRODUCTION OF THE COMPLEX CHLORIN BIOMOLECULE CHLOROPHYLL

Chemical Biomarkers: Biological Fractionation of Stable Isotopes Terrestrial Life Prefers ¹²C over ¹³C $\delta^{13}C \sim +5$ to -9 for inorganic Carbon on Earth δ^{13} C ~ -5 to -39 % of or C4 Plants & Cyanobacteria $\delta^{13}C \sim -20$ to $-42 \circ/_{00}$ for Methanogenic bacteria $\delta^{13}C \sim -25$ to -85 % for Methanotrophic bacteria $\delta^{13}C \sim +10$ to +60 % Carbonaceous Meteorites

Galimov: Thermodynamic Fractionation; βΣ¹³C of Carbon in amino acids of Carbonaceous Meteorites "Stable Isotopes show Carbon in Meteorites is clearly Extraterrestrial but analogous to terrestrial biology"

Carbon Isotope Biomarkers in Meteorites:

Analogous Fractionation of Stable Isotopes in Amino Acids

Galimov, Eric M., "The Biological Fractionation of Stable Isotopes" Academic Press, New York, p. 98, (1985).

Morphotypes of *Microcoleus, Phormidium,* and Nostoc - Carbonized Glycocalyx

• 2D EDS X-Ray Maps of Indigenous Microfossils in Murchison

Reproductive Modes in Orgueil Microfossils Septate Binary Fission & Cleavage

BSED image of 10 µm diameter filament with thick electron transparent sheath enclosing Uniseriate Linear Chain of 1.8 µm dia. X 5.5 µm Long Cells in Trichome

Orgueil Microfossils of Order: *Pleurocapsales* **Reproduction by Multiple Fission (Baeocytes)**

Nitrogen-Fixing by Cells Sausage-Shaped Chains with Reproduction by Baeocyte Formation

10µm

Polygonal Coccoids in Pseudo-filaments with Terminal Hairs and Carbonaceous Sheaths

H

Reproductive Mode: Emergent Hormogonia in Orgueil Similar to Living Cyanobacteria Trichomic Fragmentation (Hormogonia)

CF

Collapsed Sheath & Filament with thick sheath and Emergent Hormogonia of Fossil *Lyngbya* sp. morphotype in Orgueil CI1 Meteorite

H

Collapsed Filament of _____ Living Oscillataria lud

 $2 \mu m$

Collapsed Sheath & Emergent Hormogonia in Living *Lyngbya wollei* **in Pure Culture at NSSTC**

20 µ m

Oscillatoriacean MOTILITY IN ORGUEIL CI1 CARBONACEOUS METEORITE

Trichom

Spiral

Filamen

Spiral Filament (7 μ) of Uniseriate Trichomic (3 μ) Prokaryote Morphotype of Cyanobacteria (cf. *Lyngbya spiralis*)

PROTOZOAN IN EFREMOVKA CV3.5 CARBONACEOUS METEORITE

Eukaryote- Rhizopod or Testate Amoeba Protist with segmented Pseudopodia In Efremovka, CV3,5 Kazakhstan (Cf. Sarcodina sp.)

The Polonnaruwa Meteorite

Observed Fall: 29/12/2012 6:30 PM - Bright Yellow Fireball in NW-SE trajectory. Black stones fell in Polonnaruwa District of Central Sri Lanka (N 7º 52' 59.5" E 81º 9' 15.7") in Paddy Fields & Roads like "Twinkling Green Fireflies"

Meteorite with Fusion Crust Found by Hoover on 29/01/2013

The Polonnaruwa Meteorite

Jet-Black Stones Contain Carbon (~4%) & Kerogen Microfossils Witnessed Fall, N. Central Sri Lanka Very Low Density (~0.6-) ~ Pummice, Diatomite and Comets

- GCMS Data shows Significant Deuterium Enhancement over Terrestrial Abundances;
- ICP-OES & Neutron Activation Analysis Show High Level Iridium X-Ray Powder Diffraction at Cardiff University: Amorphous Silica, Cristobalite and Anorthite CaAl₂Si₂O₈; Anorthite found in Sample Recovered from Wild 2 by STARDUST Mission

Polonnaruwa Stones Unlike KNOWN Meteorites & Terrestrial Rocks May Represent New Group of Carbonaceous Meteorites Fossils of : Pennate Centric Diatoms in Meteorite Rock Matrix Heterocystous Nitrogen Fixing Cyanobacteria Morphotypes of Acritarchs and Hystrichospheres Genera & species of Freshwater & Marine Diatoms

Polonnaruwa Oxygen Isotopes Independent Laser Fluorination Measurements of Triple Oxygen Isotopes by Prof. Dr. Andreas Pack University of Göttingen and Prof. Eizo Nakamura Okayama University

Produced Consistent Results with Δ¹⁷O Far Away from Terrestrial Fractionation Line

Measurement	δ ¹⁸ 0	δ ¹⁷ 0	$\Delta^{17}0$
Prof. Dr. Andreas Pack	17.816	8.978	-0.335
Prof. Eizo Nakamura - Run 1	20.84	10.60	-0.328
Prof. Eizo Nakamura-Run 2	20.75	10.59	-0.296

Polonnaruwa Oxygen Isotopes

Fig. 1. Triple Oxygen Isotope measurements by laser fluorination at the Stable Isotope Laboratory of the University of Göttingen in Germany by Prof. Dr. Andreas Pack revealed the Polonnaruwa samples were far away from the Terrestrial Fractionation Line and could not be logically considered typical Earth rocks.

Polonnaruwa La/HF & REE Data

Hf/La & REE Plots for Aralaganwila/Polonnaruwa, Lunar Basalts and Stannern Eucrite from Vesta

Micropaleontology of Polonnaruwa DIATOMS

- Diatoms are one of the largest and ecologically most significant groups of organisms on Earth
- •Easiest to recognize due to unique cell structure, silicified cell wall and life cycle
- •Occur wherever Water & Light Co-Exist (Most diatom species need light for photosynthesis)
- **Produce Over 20% Global Photosynthetic Carbon Fixation (> All Tropical Rainforests of Earth)**

Fossil Diatoms

ф 3350x ОСТ 17 2012 15:13 (] 71.8 µm

Diatoms: Microscopic Single Celled Aquatic Plants that build Shells of Silica. Photosynthetic Plants Need Sunlight for Energy. Pennate Diatoms Swim; Centric Diatoms Float

Micropaleontology of Diatoms Origin of Diatoms

Marine Diatoms (Pyxidicula bolensis) appeared on Earth abruptly during Jurassic (190 Ma) *Freshwater Diatoms Not Until Paleocene (60 Ma)*

> 130 Ma Gap Implies Cosmic Injection and not Earth Origin

Pyxidicula sp., Marine, Lower Cretaceous, Panoche Hills, CA Photo: Richard B. Hoover Athens State University

3500x OCT 68.7 um

Fossil Record of Diatoms on Earth

Freshwater Diatoms Raphid Pennates Paleocene (Russia) Late Eocene (North America) (45-65 Ma)

Marine Araphid Pennates Late Cretaceous (Cenemonian-Maastrichtian) (65-96 Ma)

Diverse Marine Centrics Early Cretaceous (Aptian-Albian Stage, Weddell Sea) (112-124 Ma)

Pyxidicula (*P. liassica; P. Bollensis*) Jurassic, Toarcian Stage Liassic Boll Shales, Wurtenburg (190 Ma)

Eon	Era	Period	Epoch	Age Ma
Appearance of Diatoms	Cenozoic	Quaternary	Holocene	0.01
			Pleistocene	1.64
		Neogene	Pliocene	5.2
			Miocene	23.3
			Oligocene	35.4
Freshwaist Raphid Pennates	-	Palaeogene	Eocene	56.5
			Palaeocene	65.0
		Cretaceous		145.6
	sozoi	Jurassic		208.0
	ž	Triassic		245.0
	Palaeozoic	Permian		290.0
		Carboniferous		362.5
		Devonian		408.5
		Silurian		439.0
		Ordovician		510.0
		Cambrian		570.0
Proterozoic				2500
Archean				4000

Geologic Time Scale Based on Harland, 1989

Fossil Diatoms in the Polonnaruwa Meteorite Marine Araphid Pennates in Upper Cretaceous ~ 70 ma; – Freshwater Pennates with Raphe in Paleocene ~ 60 ma

A A VV for may experies

Diatoms and Cyanobacteria in Polonnaruwa Meteorite

Nitzschia frustulum, Reimeria sinuata & Placoneis sp. with cyanobacteria Microcoleus chtonoplastes

Araphid Pennates (Marine Diatoms) in Polannaruwa Meteorite

20µm

Intact Araphid Diatoms cf. Ardissonea robusta

8µm

Fossil Marine Diatoms in Polannaruwa Meteorite

Internal Septa of Fossil Marine Araphid Pennate Rhabdonema minutum Kutzing & New Species

4µm

Embedded Pinnularia species in Polannaruwa

10µm

Pinnularia spp.

Intact Diatom Frustules in Polonnaruwa Meteorite

Nitzschia species with Raphe on Keel

Diatoms in Polonnaruwa Meteorite

FEI Quanta 600 FEG 7.0 KV EN Mag 5000X MSFC Material Diagnostics Facility

Exotic Pennate with Strange Morphology

5µm

Marine Diatoms in Polonnaruwa Meteorite

Planktonic Diatoms in Polonnaruwa Meteorite

Aulacoseira ambigua cells in Polonnaruwa (8.6μm dia. x 9.5 μm mantle height) with Rimoportula and Ringleiste marked. Terrestrial Forms Length Range 3-12 μm; Width Range 5-15 μm

Polonnaruwa Eukaryote @ PIN

Euglena: Lepocinclis spirogyra

Unknown Polonnaruwa Protist @ PIN

Polonnaruwa Diatom @ PIN

MICROPALEONTOLOGY INVESTIGATIONS AND NEUTRON ACTIVATION ANALYSIS OF CARBONACEOUS METEORITES Conclusions

Microfossils (Mostly Prokaryotes) found in all Groups of Carbonaceous Meteorites but Never in Other Meteorites Polonnaruwa stones Unlike Known Meteorite Groups Observed to Fall in North Central Sri Lanka 29/12/2013 Density, Mineralogy & Triple Oxygen Isotopes Establish Stones are not Terrestrial **Polonnaruwa Stones Have Anomalous Abundances of** Rare Earth Elements, Rare Earth Metals, PGE's and **Contain Diatoms & Many Exotic Extinct Microfossils Absence of Nitrogen Indicates Fossils are Indigenous Neutron Activation Analysis May Help Resolve Mystery**

MICROPALEONTOLOGY INVESTIGATIONS AND NEUTRON ACTIVATION ANALYSIS OF CARBONACEOUS METEORITES

Thank You For Your Kind Attention