

The upgraded experimental setup Kolkhida designed to study interactions of polarized neutrons with polarized nuclei.

Berikov Daniyar Junior researcher, JINR, FLNP

Table of contents

Introduction

***** Experimental setup Kolkhida:

- polarized neutron spectrometer
- polarized nuclear target
- ferromagnetic neutron spin resonator

Conclusions

$$H_{ef} = \frac{\omega}{\gamma_n} P_N,$$

Introduction

Our plan is to study the nuclear precession of neutron spin in a wide range of neutron energies

The projected studies on neutron nuclear precession will be performed in the neutron energy range from 0.062 eV to 2.3 eV.

Introduction

Polarized neutron spectrometer

1 – primary collimator; 2 – Soller collimator; 3 – polarizer crystal; 4 – guiding field electromagnets;
 5 – Mezei flipper; 6 – shim; 7 – cryostat; 8 – analyzer crystal; 9 – detector.

Control system

FL57STH76-1006B

OCD-SL00B-0016-C100-CRW

8SMC1-USBh

Energy spectrum of the primary neutron beam

The neutron flux in the specified energy range was 1.0 x 10⁶ n/cm²s.

The neutron diffraction

The neutron diffraction

The neutron diffraction

Parameters of the polarized neutron beam

Angle θ (deg)	19	12	6	4	3
Wavelength λ (Å)	1,15	0,74	0,37	0,25	0,19
Energy E_n (eV)	0,062	0,15	0,60	1,3	2,3
Detector counting rate after the polarizer n_1 (s ⁻¹)	800	270	65	33	22
Polarized beam intensity I_1 (n/s cm ²)	430	200	80	60	50
Detector counting rate after the analyzer n_2 (s ⁻¹)	70	23	3,1	0,6	0,2

The neutron beam polarization

Polarized nuclear target

³He - ⁴He dilution cryostat diagram with a superconducting solenoid.
1 - main flange; 2 - vacuum housing; 3 - central ³He pump-out pipe;
4 - nitrogen bath; 5 - nitrogen screen; 6 - helium bath; 7 - helium screen; 8 - helium bath to be evacuated; 9 - dilution stage helium screen; 10 - cryo-valve; 11 - superconducting solenoid;
12 - nitrogen trap of booster pump NVBM-2.5; 13 - oil filter;
14 - pump NVG-2; 15 - carbon trap; 16 - ³He storage cylinder;
17 - ³He - ⁴He mixture storage cylinder; 18 - evaporation bath;
19 - heat exchangers; 20 - dilution bath.

Polarized nuclear target

We have also upgraded the polarized nuclear target:

*****We have updated the cryostat service infrastructure by

replacing old vacuum devices with modern ones.

*****We have created a new, modern dilution bath for the cryostat.

*****We have created a new cryostat component for neutron

Investigation of specimens in strong magnetic fields at room temperature (a "warm sluice").

Ferromagnetic neutron spin resonator

Н, эрстед

Ferromagnetic neutron spin resonator

A warm sluice

Diagram of the 'warm sluice'

1 - sluice; 2 - vacuum flange; 3 - nuclear target; 4 - superconducting solenoid;
5 - cryostat's baths; 6 - vacuum housing of cryostat; 7 - vacuum-valves;

Conclusion

We have completed the upgrade of the Kolkhida experimental setup. As a result of the modernization of the KOLKHIDA experimental setup we have upgraded the polarized neutron spectrometer control and monitoring system. We have completely updated fore-vacuum and high-vacuum pumps of the ³He-⁴He dilution cryostat. The cryostat has been equipped with a detachable system designed to study specimens placed in strong magnetic field at room temperature. We have developed new software for the KOLKHIDA setup.

Thank you for your attention!