

FAST-NEUTRON SPECTROMETRY WITH A HIGH-RESOLUTION DYNAMIC-RECORD-LENGTH DIGITAL DATA ACQUISITION SYSTEM

POWERFUL NEW CONCEPT OF DATA ACQUISITION

L. Zavorka, M. Zbořil, A. Zimbal

AG 6.46 Neutron Spectrometry and Neutron Sources

PURCHASE

TEST

PURCHASE

PURCHASE

TEST

PERFORMANCE TESTS IN PTB NEUTRON FIELDS

PURCHASE

TEST

PERFORMANCE TESTS IN PTB NEUTRON FIELDS

PURCHASE

TEST

PERFORMANCE TESTS IN PTB NEUTRON FIELDS

- Neutron fusion diagnostics
- Spectrometry of spallation neutron fields

• Neutron fusion diagnostics

based on fast neutron spectrometry due to the relation between the shape of neutron spectrum and plasma temperature

- Extreme environmental conditions (radiation, temperature, magnetic field)
- Development of the Compact Neutron Spectrometer at PTB within the Joint European Torus (JET) Enhancement Project
- ITER under construction

- Spectrometry of high energy neutrons is essential for characterization of intense spallation neutron fields
- Neutron energy of interest up to some GeV
- Utilization of ²³²Th and ²³⁸U in ADS and **GEN IV** fast nuclear reactors
- Transmutation of spent nuclear fuel
- Challenge for neutron dosimetry at research spallation neutron sources (SNS, ESS, MYRRHA)
- PTB contribution to EU projects

D. Filges and F. Goldenbaum, Handbook of Spallation Research, WILEY-VCH Verlag, 2009

Developments in Nuclear Electronics

- In HIGH COUNT RATE APPLICATIONS, analog modules cannot compete with the digital signal processing systems
- Recent developments in computer hardware have helped initiate progress in many areas of physics research

ANALOG MODULES

Easy replacement/repair of individual modules in case of failure

Considerable knowledge and experience of an experimenter are required and can be learnt

DIGITAL SYSTEMS

National Metrology Institute

- FAST DIGITAL ELECTRONICS MUST PROVIDE:
 - 1) Continuous collection of maximum amount of information from a detector
 - 2) No internal memory limit
 - 3) High-speed data transfer
 - 4) Optimal data compression (minimal data storage)
 - 5) High sampling rate
 - 6) High resolution
 - 7) Universality
 - 8) Cost-effectiveness

PTB: From Analog to Digital Systems

- Analog modules used for decades
- Digital Pulse Shape Discrimination system ENEA Frascati FUS-ING 07-010 in use since 2006:
 - 14-bit resolution
 - · 200 MS/s sampling rate
 - · PCI bus 80 MB/s
 - · 1.28 GB RAM
 - Dynamic window

• Developed especially for acquisitions in n/γ mixed fields

PTB: From Analog to Digital Systems

- Analog modules used for decades
- Digital Pulse Shape Discrimination system ENEA Frascati FUS-ING 07-010 in use since 2006:
 - 14-bit resolution
 - · 200 MS/s sampling rate
 - · PCI bus 80 MB/s
 - · 1.28 GB RAM
 - Dynamic window

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

A New Digitizer

- **Requirements for a new digitizer for measurements** with fast radiation detectors introduced by A. Zimbal
- Currently, no commercially available product with:
 - Resolution > 14 bit ٠
 - Sampling rate \geq 500 MS/s ٠
 - Minimum 2 independent DC input channels ٠
 - Variable gain input (1+3 Vpp) with over-voltage protection
 - **Dynamic and fixed window length modes**
 - Zero dead time ٠
 - **User-friendly Graphical User Interface (GUI)** ٠
 - Field-Programmable Gate Array (FPGA) ٠
- Digitizer developed by Signal Processing Devices AB Sweden (SP Devices) in 2015

20

Characteristics of ADQ14

- SP Devices ADQ14-4C-DC-VG waveform digitizer provides:
 - 4 channels running each at 1 GS/s
 - 14-bit resolution
 - Variable gain input 0.3 ÷ 5.0 Vpp
 - Fixed and dynamic record length modes
 - Digital baseline stabilizer and moving average filter
 - Transfer rate from digitizer to PC RAM 3.2 GB/s
 - Intel PCIe SSD 800 GB (Write 1.9 GB/s, Read 2.8 GB/s)
 - Data-driven acquisition: FirmWare Pulse Detection
 - Header (time stamp, window length) and data files

- **Sampling rate**
 - ENEA Frascati
 FUS-ING 07-010
 200 MS/s

SP Devices
 ADQ14-4C-DC-VG
 1 GS/s

- Optimization of data collection by:
 - 1) Minimizing record length when pulses of different lengths occur Neutrons, gammas, LED
 - 2) Extending record length when pulses arrive closely one to the other: loss-less data collection

High count rate conditions, bursts, pile-up analysis required

Arming Principle

- Dynamic record length mode controlled by a set of levels and arm hystereses:
 - Trigger level
 - Reset level
 - Trigger arm hysteresis
 - Reset arm hysteresis
- Each record contains user-specified:
 - Pre-trigger
 - Trailing edge window accepting trigger events

Dynamic Record Length in Real Life

Dynamic Record Length in Real Life

Commissioning Troubles

- Initially very limited options in GUI
- Magic formulas required for optimal acquisition settings
- Improper function of arming
- Unstable mode of data collection
- Memory management errors
- Half of maximum gain available
- Coincidence option did not work
- All bugs successively removed

• **PTB** Department of Neutron Radiation operates:

- Cyclotron: $E_{p,max}$ = 19 MeV, $E_{d,max}$ = 14 MeV
- Van de Graaf (3.75 MV, in decommissioning)
- Tandetron (2 MV, from 2017) $E_{p,d,max}$ = 4 MeV, I_{max} = 50 µA

and provides standard reference neutron fields:

- Monoenergetic $E_n = 24 \text{ keV} \div 19 \text{ MeV}$
- Collimated high-intensity beams with a broad energy distribution ≤ 17 MeV
- High-energy gamma radiation (7 MeV)
- Low backscatter background
- Achievable time resolution of 1 ns, TOF
- Micro-ion beam for radiobiological investigations on cells

- Liquid scintillation detector NE213 / BC501A, 2"× 2"
- PMT gain stabilization with an integrated pulsed LED
- n/γ discrimination based on different response of the detector to recoil protons and Compton electrons

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Diamond Detectors

- single crystal Chemical Vapor Deposition diamond detectors (scCVD)
- Neutron spectrometry in range 2 MeV $< E_n < 50$ MeV
- Elastic and inelastic neutron collisions with carbon nuclei
- Not very sensitive to γ radiation
- Fast response, good resolution
- Small size (5 \times 5 \times 0.5) mm³
- High radiation hardness
- Charge trapping and imperfect electrode/diamond interface influence stable operation

- Main purposes of test measurements:
 - Test performance of the new digital board in mixed neutron and $\gamma\text{-ray}$ fields
 - Connect the digitizer to different types of neutron spectrometers (diamond, scintillation)
 - Test both the fixed and dynamic record length modes
 - Determine optimal settings of the adjustable parameters in the firmware pulse detection GUI
 - Compare performance of the new board with the already available ENEA digital pulse shape discrimination system

DIAMOND DETECTOR

SCINTILLATION DETECTOR

Experimental Campaign II

DIAMOND DETECTOR:

- High-intensity neutron field with a broad energy distribution up to 17 MeV
- Test the count-rate capability and dead time of the new digitizer
- Test performance with different preamplifiers
- Test the arming mechanism with positive input signals

SCINTILLATION DETECTOR:

- Monoenergetic field of 14 MeV neutrons
- Find out optimal settings for n/γ discrimination (Figure of Merit - FOM)
- HV bias: 1462, 1630, and 1690 V
- Custom build shaping amplifiers (passband DC – 15 MHz, Gain 1.2 & 4.0)
- Test the arming mechanism with negative input signal
- Pulse height spectrum resolution test

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Count Rate Capability I

- Test of digitizer's dead time at high count rate (9×10⁴ cps)
- Distribution of intervals between successive events:
 - Random process characterized by a constant probability of occurrence per unit time (Poisson random process)

• Application of Monte Carlo methods: (comes on the next slide)

• Digitizer shows no dead time in the order of ~ 10 ns or higher

Fundamental n/γ discrimination quality: Figure of Merit (FOM)

• Fundamental n/γ discrimination quality: Figure of Merit (FOM)

$$FOM = \frac{S}{FWHM_{gamma} + FWHM_{neutron}}$$

• For well separated Gaussian distributions: $S>3(\sigma_{qamma}+\sigma_{neutron})$

S: separation between peaks

 σ : standard deviation

 $FWHM \approx 2.36 \sigma$

Comparison of the new digitizer with ENEA system performance

HV BIAS (V)	1462		1630		1690		
GAIN	FOM	Pile-up (%)	FOM	Pile-up (%)	FOM	Pile-up (%)	WL
0			0.98(3)	0.85			D
	1.21(2)	2.88	1.86(2)	3.30	1.98(2)	4.65	F500
		-		0.86		-	D100
1.2			1.07(5)	0.75	1.23(4)	1.41	D
	1.34(2)	2.54	2.10(2)	2.97	2.24(1)	4.53	F500
		-		1.60		1.97	D150
4	0.97(3)	1.26					D
	2.11(1)	3.66					F500
		1.55					D150

Maximal figure of merit (FOM): <u>SP Devices</u>, HV = 1690 V, Gain = 1.2

PHS Slope Resolution

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

- Performance of the new digitizer was tested in various experimental conditions and a positive impression has been left despite some problems during commissioning
- Quality of measurements considering especially FOM, acquisition time, amount and speed of data storage has increased substantially with the new digitizer
- Optimal configuration with scintillation detector has been found
- No significant dead time observed
- Plans for future:
 - Implementation of the pile-up analysis
 - Perform further tests (coincidence mode, TOF)

Thank you for your attention

Distribution of window lengths