TWISTING NEUTRON WAVES

"Controlling Neutron Orbital Angular Momentum," C. W. Clark, et al., Nature **525**, 504 (2015) "Holography with a neutron interferometer," D. Sarenac, , et al., Opt. Express **24**, 22528 (2016) "Spin-orbit states of neutron wave packets," J. Nsofini, , et al., Phys. Rev. A **94**, 013605 (2016)

Dmitry Pushin

Department of Physics and Astronomy & Institute for Quantum Computing, University of Waterloo/National Institute of Standards and Technology

NS

WATERLOO II

Outline

- Neutron Interferometry
- Controlling Neutron Orbital Angular Momentum
- Neutron Holography
- Spin-orbit states of neutron waves

Experiments performed at the NIST Center for Neutron Research National Institute of Standards and Technology, Gaithersburg, Maryland

NI history

- b) Sketch of the biprism interferometer setup.
 Wave front division interferometer based on single-slit diffraction.
 (Beam separation of the order of 60µm);
- c) Intensity of the neutron on the detector due to vertical scan of the second slit.

Fig. 1. Schema eines Neutroneninterferometers mit Fresnelschem Biprisma. Größenordnungsmäßig ist: Ablenkwinkel γ am Spiegel 0,1°, Abstand Eintritts-Austrittsspalt a + b = 10 m, größter Abstand der Strahlengänge 2D = 0,1 mm. Die $\lambda/2$ -Folie dient für das in Abschnitt 4 beschriebene Experiment

Fig. 0. Interferenzmuster. z Stellung des verschiebaren Hauptspaltes. I(z) Intensität (der Nulleffekt war bei diesen Messungen etwa 60 Pulse/Std). •, o Voneinander unabhängige Meßreihen, erstere ist Mittel aus inehreren Durchgängen. Ausgezogene Kurve: Mit Cornu-Spirale berechnet unter der Annahme monochromatischer Neutronen mit 4,4 Å. Über Hauptspaltbreite gemittelt; endliche Breite des Eintrittsspaltes vernachlässigt. Theoretische Kurve und McEpunkte der beiden Serien •, o untereinander nur im Scheitel der Interferenzfigur aufeinander normiert

NI history

The perfect-crystal neutron interferometer was demonstrated by Rauch, Treimer, Bauspiess and Bonse in 1974 in Austria (*Phys. Lett. A*, 1974) and by Sam Werner in USA

VOLUME 34, NUMBER 23

PHYSICAL REVIEW LETTERS

9 JUNE 1975

Observation of Gravitationally Induced Quantum Interference*

R. Colella and A. W. Overhauser Department of Physics, Purdue University, West Lafayette, Indiana 47907

and

S. A. Werner Scientific Research Staff, Ford Motor Company, Dearborn, Michigan 48121 (Received 14 April 1975)

We have used a neutron interferometer to observe the quantum-mechanical phase shift of neutrons caused by their interaction with Earth's gravitational field. **42st Anniversary** First measurement of the effect of gravity on a deBroglie matter wave.

Second edition of monograph by Helmut Rauch and Sam Werner published by Oxford University Press, January 2015. The superposition principle and conservation of momentum combine to make the most beautiful and most useful thing in all of the world:

Interference

Discovery of gravitational waves (2016): Laser Interferometer Gravitational-Wave Observatory (LIGO) uses Michelson interferometer configuration. *Most sensitive measurement instrument ever made.*

Size $\approx 10 \text{ cm}$

$$\psi = \frac{1}{\sqrt{2}} (|upper\rangle + |lower\rangle)$$

$$\psi = \frac{1}{\sqrt{2}} (|upper\rangle + |lower\rangle)$$

$$\psi = \frac{1}{\sqrt{2}} (|upper\rangle + |lower\rangle)$$

We measure the neutron intensity

In this case that is the number of neutrons per unit time

contrast =
$$\frac{B}{A}$$

$$= A + B\cos(\phi_{flag} + \phi_0 + \phi_{sample})$$

Multiple Interactions

Neutron interferometry is a diverse instrument

- Nuclear
- Gravity
- Magnetic
- Coriolis
- Aharonov-Cashir
- Scalar Aharonov-Bohm

Perfect Crystal Interferometer

- Cut from a single ingot of silicon
- Blades are machined and left attached to a common silicon base
- The crystals are cut such that the Si lattice planes are perpendicular to the surfaces of the blades
- Each crystal blade acts as a beam splitter

The Neutron Interferometer and Optics Facility

Isolated 40,000 Kg room is supported by six airsprings Active Vibration Control eliminates vibrations less than 10Hz Temperature Controlled to +/- 5 mK

The Neutron Interferometer and Optics Facility

Isolated 40,000 Kg room is supported by six airsprings Active Vibration Control eliminates vibrations less than 10Hz Temperature Controlled to +/- 5 mK

Introducing

Control of neutron ORBITAL ANGULAR MOMENTUM

Electromagnetic field

The spin angular momentum (SAM) of light is connected to the polarization of the electric field. Light with linear polarization (left) carries no SAM, whereas right or left circularly polarized light (right) carries a SAM of ±ħ per photon.

Helical phase fronts for (a) l=0, (b) l=1, (c) l=2, and (d) l=3.

- Waves 101: orbital angular momentum

$$\frac{\partial}{\partial t}\Psi\left(\mathbf{x},t\right) = i\nabla^{2}\Psi\left(\mathbf{x},t\right)$$

Orbital angular momentum (OAM) waves $\Psi_{k,q,l} \left(\mathbf{x} \right) = e^{ikx_3} J_l \left(q\rho \right) e^{il\phi}$

Implemented in light (1990), ultracold atoms (2006), electrons (2010), neutrons (2015)

Field amplitude carries a spiral phase exp $(l \ l \ \phi)$. Helical phase fronts for (a) l=0, (b) l=1, (c) l=2, and (d) l=3.

A. M. Yao and M. J. Padgett, Adv. Opt. Photon. 3, 161–204 (2011)

ЛАЗЕРНЫЕ ПУЧКИ С ВИНТОВЫМИ ДИСЛОКАЦИЯМИ ВОЛНОВОГО ФРОНТА

В.Ю.Баженов, М.В.Васнецов, М.С.Соскин

Экспериментально получены и исследованы когерентные световые поля с дислокациями волнового фронта различных порядков при прохождении лазерного пучка через многомодовый волновод и при дифракции на синтезированных голограммах.

Дислокации волнового фронта ¹ или оптические вихри привлекают внимание как один из новых объектов, существующих в оптических полях сложной пространственной структуры или в лазерных резонаторах с большим числом Френеля ². При наличии винтовой дислокации волновой фронт представляет собой единую

Laser beams with screw dislocations in their wavefronts

V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin Institute of Physics, Academy of Sciences of the Ukrainian SSR

(Submitted 28 August 1990) Pis'ma Zh. Eksp. Teor. Fiz. 52, No. 8, 1037–1039 (25 October 1990)

Coherent optical fields with wavefront dislocations of various orders have been produced experimentally and studied during the passage of a laser beam through a multimode waveguide and during diffraction by some holograms which have been synthesized.

Wavefront dislocations¹ or optical vortices have attracted interest as some of the new entities which exist in optical fields with a complex spatial structure or in laser cavities with a large Fresnel number.² When there is a screw dislocation, the wavefront

OIQC

The 1990 holograms of Bazhenov, Vasnetsov and Soskin

FIG. 1. a: Experimental setup. 1—He–Ne laser; 2—beam expander; 3—beam splitter; 4,5—mirrors; 6 objective; 7—braided optical fibers; 8—diverging lens; 9—half-silvered mirror; 10—camera; 11—screen for observing the interference of the beams. b: Interference pattern formed by the spherical reference wave and a wave with a screw wavefront dislocation.

Above: Mach-Zehnder interferometer of Bazhenov *et al.* (1990) Below: Hologram of optical vortex using *spherical-wave* reference beam

Synthetic holograms using planewave reference beam: *l* = 1 and *l* = 2 How to generate such modes?

Adv. Opt. Photon. 3, 161–204 (2011).

l=3

-
_

l=3

Yao, A. M. & Padgett, M. J. Adv. Opt. Photon. 3, 161–204 (2011)

PHILOSOPHICAL TRANSACTIONS **OF THE ROYAL SOCIETY A**

MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES

Optical orbital angular momentum

Theme issue compiled and edited by Stephen M. Barnett, Mohamed Babiker and Miles J. Padgett

J. Opt. 19 (2017) 013001 (51pp)

Roadmap

Roadmap on structured light

Halina Rubinsztein-Dunlop^{1,21,22}, Andrew Forbes^{2,21,22}, M V Berry³, M R Dennis³, David L Andrews⁴, Masud Mansuripur⁵, Cornelia Denz⁶, Christina Alpmann⁶, Peter Banzer⁷, Thomas Bauer⁷, Ebrahim Karimi⁸, Lorenzo Marrucci⁹, Miles Padgett¹⁰, Monika Ritsch-Marte¹¹, Natalia M Litchinitser¹², Nicholas P Bigelow¹³, C Rosales-Guzmán², A Belmonte¹⁴, J P Torres^{14,15}, Tyler W Neely¹, Mark Baker¹, Reuven Gordon¹⁶, Alexander B Stilgoe¹, Jacquiline Romero¹⁷, Andrew G White¹⁷, Robert Fickler⁸, Alan E Willner¹⁸, Guodong Xie¹⁸, Benjamin McMorran¹⁹ and Andrew M Weiner²⁰

¹School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072, Australia ²School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa ³H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK

⁴School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK ⁵College of Optical Sciences, The University of Arizona, Tucson, AZ 85721, USA

⁶Institute of Applied Physics, University of Muenster, Corrensstr. 2/4, 48149 Muenster, Germany ⁷Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1/Bldg 24, 91058 Erlangen, Germany

⁸Department of Physics and Max Planck Centre for Extreme and Quantum Photonics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

⁹Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Napoli, Italy

¹⁰ SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

¹¹ Division of Biomedical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria

¹² Department of Electrical Engineering, State University of New York, Buffalo, NY 14260, USA

¹³ The Institute of Optics, University of Rochester, Rochester, New York 14627, USA

¹⁴ Technical University of Catalonia, Department of Signal Theory and Communications, 08034 Barcelona,

Spain ¹⁵ ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona),

Spain ¹⁶Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada

¹⁷ Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia

¹⁸ Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA ¹⁹ Department of Physics, University of Oregon, 1585 E 13th Avenue, Eugene, Oregon 97403, USA

²⁰ School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, USA

E-mail: halina@physics.uq.edu.au and Andrew.Forbes@wits.ac.za

Received 11 May 2016, revised 9 September 2016 Accepted for publication 9 September 2016 Published 25 November 2016

Abstract

Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the

²¹ Guest editors of the roadmap.

²² Authors to whom any correspondence should be addressed.

2040-8978/17/013001+51\$33.00

$$h = h_0 + \frac{h_s \varphi}{2\pi}$$

Spiral Phase Plate

$$\Delta\theta = -Nb_c\lambda h = -Nb_c\lambda \left(h_0 + \frac{h_s\varphi}{2\pi}\right)$$

Contrast Over the Neutron Beam

 $I_0 \propto [1 + \cos(3 \cdot \alpha)]$

"Controlling Neutron Orbital Angular Momentum," C. W. Clark, et al., Nature 525, 504 (2015)

$$|\Psi_{SPP}\rangle = \sum_{n_r=0}^{\infty} C_{n_r} e^{i\ell\overline{\varphi}} e^{ik_z\overline{z}}$$
$$|n_r, \ell, k_z\rangle = \mathcal{N}\xi^{|\ell|} e^{-\frac{\xi^2}{2}} \mathcal{L}_{n_r}^{|\ell|} \left(\xi^2\right) e^{-i\ell\phi} Z(z)$$

$$C_{n_{r},\ell} = \int_{0}^{2\pi} \int_{0}^{\infty} \langle n_{r}, \ell | \Psi_{\text{SPP}} \rangle r dr d\phi$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{-1}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{-1}^{\frac{$$

 ∞

"Controlling Neutron Orbital Angular Momentum," C. W. Clark, et al., Nature 525, 504 (2015)

Transforms as angular momentum under rotation

L=3, $\phi_0 = 0$

L=3, ϕ_0 =0.3125°

"Controlling Neutron Orbital Angular Momentum," C. W. Clark, et al., Nature 525, 504 (2015)

Holography

Dennis Gabor 1900 - 1979 1971 Nobel Prize in Physics "for his invention and development of the holographic method."

- Invented by Dennis Gabor in 1947
- Invention of laser made it practical in the early 1960s

FIG. 1. Wedge technique for producing a two-beam hologram. The object is placed in the lower part of plane P_1 ; the hologram is recorded at plane P_2 .

Emmet N. Leith and Juris Upatnieks, "Wavefront Reconstruction with Continuous-Tone Objects," J. Opt. Soc. Am. 53, 1377 (1963)

Holography

Dennis Gabor 1900 - 1979 1971 Nobel Prize in Physics "for his invention and development of the holographic method."

The hologram

Emmet N. Leith and Juris Upatnieks, "Wavefront Reconstruction with Continuous-Tone Objects," J. Opt. Soc. Am. 53, 1377 (1963)

First forays in neutron holography

Leith and Upatnieks approach in a neutron interferometer

First forays in neutron holography

D. Sarenac, M. Arif, C. W. Clark, D. G. Cory, B. Heacock, M G. Huber, C. Shahi and D. A. Pushin, *Optics Express* (2016 in press)

First demonstration of OAM control of neutron beams

Simple macroscopic spiral phase plates possible

Demonstration of angular momentum addition and conservation of topological charge

New quantized degree of freedom for neutronbased QIP and general spatial filter for neutron beams

Spin Orbit States

Nsofini, J., Sarenac, D., Wood, C.J., Cory, D.G., Arif, M., Clark, C.W., Huber, M.G. and Pushin, D.A., 2016. Spin-Orbit States of Neutron Wavepackets. *Phys. Rev. A 94, 013605 – Published 13 July 2016*

Spin Orbit States of Neutron Wavepackets

Polarized Neutron Wave Packet

$$\Psi = R \otimes |\uparrow_{z}\rangle$$
$$R = (2\pi\sigma_{\perp}^{2})^{-1/2} e^{-r^{2}/(4\sigma_{\perp}^{2})}$$

Spin Orbit States of Neutron Wavepackets

Quadrupole Magnet

Spin Orbit States of Neutron Wavepackets

Polarization relatable to helical structures such as skyrmions

Coherent control over the SO state

Nsofini, J., Sarenac, D., Wood, C.J., Cory, D.G., Arif, M., Clark, C.W., Huber, M.G. and Pushin, D.A., 2016. Spin-Orbit States of Neutron Wavepackets. *Phys. Rev. A 94, 013605 – Published 13 July 2016*

Thank you

UNIVERSITY OF **VATERLOO** Institute for Quantum Computing

NIST

Check your system before...

Quantum de la construction de la

actionatorial and

"Tractricious" Robert R. Wilson

A "spiral" defined by straight rays

Fermi National Accelerator Laboratory

1763 1764 1764

Image: Fermilab

"Tractricious"

Seen from within, Looking up

