In the name of Allah the most beneficent the most merciful

GEOMETRY OPTIMIZATION OF URANYL NITRATE LIQUID TARGET SYSTEM FOR ⁹⁹Mo

THAT TOTAL OF THE TOTAL OF

Z. GHOLAMZADEH, S. MOHAMMADI, S.M. MIRVAKILI, F. FAGHIHI

⁹⁹Mo AND ⁹⁹mT*c* DECAY CHART

GLOBAL ⁹⁹Mo SUPPLY CHAIN

Limited suppliers involved in the global manufacture of Mo-99 main reactors producing medical isotopes Mo-99 processing facilities generator manufacturing facilities

GLOBAL ⁹⁹Mo SUPPLY CHAIN

GLOBAL ⁹⁹Mo SUPPLY CHAIN

⁹⁹Mo / ^{99m}Tc APPLICATIONS

Composition of Nuclear Medical Procedures Where Technetium-99m is Predominant

PROTON-FISSION REACTION

BATMAN EQUATION

LIQUID TARGET MODELING

LIQUID TARGET SYSTEM FOR ⁹⁹Mo PRODUCTION

3D view of simulated liquid target

3D view of liquid target without container (Target holder)

PROTON FLUX DISTRIBUTION INSIDE THE TARGETS WITH DIFFERENT RADII

NEUTRON FLUX DISTRIBUTION INSIDE THE TARGETS WITH DIFFERENT RADII

RADIUS OPTIMIZATION FOR ⁹⁹Mo PRODUCTION

HEIGHT OPTIMIZATION FOR ⁹⁹Mo PRODUCTION

proton heat power deposited in solutions

Technetium IKri4d*5s?

Neutron heat power deposited in solutions

HEIGHT OPTIMIZATION FOR ⁹⁹Mo PRODUCTION

distribution of neutron flux in liquid

distribution of proton flux in liquid

HEIGHT OPTIMIZATION FOR ⁹⁹Mo PRODUCTION

HEIGHT VARIATION \rightarrow PRODUCTION OF ⁹⁹Mo IS CONSTANT \rightarrow BECAUSE OF BETTER HEAT TRANSFER IN BIGGER TARGET AREA \rightarrow WE CHOOSE A HEIGHT OF **20**

Height (mm)	Neutron Flux (n/cm².s)	Proton Flux (p/cm².s)	Total Deposited Heat Power (W)	Neutron fission heat power (W)	Target Volume (cm³)
8	1.84E+ 12	5.08E+	5.37E+0	1.53E- 04	1.17E- 01
12	1.43E+ 12	2×8	mm	1.69E- 04	1.68E- 01
16	1.17E+ 12	2.73E+ 14	9.98E+0 1	1.80E- 04	2.18E- 01
20	9.89E+ 11	2.22E+ 14	1.23E+0 2	1.86E- 04	2.68E- 01

GOLD SPHERICAL CONTAINER FOR INVOLVING THE LIQUID TARGET

The purposed liquid uranyl sulfate container a) modeled by MCNPX2.6.0 Code b) used in the cyclotron accelerator

OUR RESULTS CONFORMITY WITH EXPERIMENTAL

Comparison of 99Mo production yield by different accelerator-based methods

Ponction	Energy In	Energy Out	^{99Mo} yield	Dof	
Reaction	(MeV)	(MeV)	(MBq/µA.h)	Rel.	
100 Mo(p,x) 99 Mo	25	0	20.35	[15]	
$^{100}Mo(p,x)$ ⁹⁹ Mo	25	0	26.64	[16]	
100 Mo(p,x) 99 Mo	25	0	36.26	[17]	
$^{nat}Mo(p,x)^{99}Mo$	25	0	6.30	[18]	
$^{nat}Mo(p,x) ^{99}Mo$	30	0	5.92	[19]	
$^{100}Mo(\gamma, n)^{99}Mo$	—		3.029	[20]	
$^{nat}Mo(d,x)^{99}Mo$	25	0	8.99	[21]	
$^{nat}Mo(d,x) ^{99}Mo$	20	4	8.00	[2]	
$^{nat}Mo(d,x)^{99}Mo$	22	0	8.28	[19]	
²³² Th(p, fiss) ⁹⁹ Mo	25	0	5.10	[2]	
Solid target, ²³² Th(p, fiss) ⁹⁹ Mo	25	0	4.93±0.29	[12]	
Solid target, ^{nat} U(p, fiss) ⁹⁹ Mo	25	0	5.08±0.10	[12]	
Liquid target, ^{nat} U(p, fiss) ⁹⁹ Mo	30	0	290.08±0.01		

DEPOSITED HEAT INSIDE THE

TARGET

PEAK OF TEMPERATURE INSIDE THE TARGET

0.18 Ci after 24h irradiation using 1µA

JET COOLING WITH FLOW RATE OF 25 M/S

A COMPARISON BETWEEN PRODUCTION METHODS

30 MeV, 4.5 kW, ~ 5 6-day-Ci/week , ^{Nat}U(p,fiss)⁹⁹Mo

Particle	Accelerator	Reaction	Energy	Beam Power	Target	6-day- Ci/wk	kWh/6 day-Ci
Proton [3]	ADSR	²³⁵ U(n,fission) ⁹⁹ Mo	1 GeV	1 MW	LEU	~6000	~25
Proton [3]	ADSR	⁹⁸ Mo(n,γ) ⁹⁹ Mo	1 GeV	1 MW	⁹⁸ Mo	~3000	~50
Proton [4]	ADSR	²³⁵ U(n,fission) ⁹⁹ Mo	200 MeV	100 kW	LEU	~7000	~2.5
Electron[9]	RF Linac	²³⁸ U(y,fission) ⁹⁹ Mo	50 MeV	1 MW	Natural U	~180	~900
Electron[9]	RF Linac	¹⁰⁰ Mo(γ,n) ⁹⁹ Mo	>30 MeV	500 kW	¹⁰⁰ Mo	~500	~170
Electron[10]	RF Linac	¹⁰⁰ Mo(γ,n) ⁹⁹ Mo	25 MeV	20 kW	Natural Mo	~5	~800
Proton [6]	cyclotron	¹⁰⁰ Mo(p,pn) ⁹⁹ Mo	45 MeV	4.5 kW	¹⁰⁰ Mo	~2.5	~270
Proton [6]	cyclotron	¹⁰⁰ Mo(p,pn) ⁹⁹ Mo	45 MeV	4.5 kW	Natural Mo	~0.25	~2700

IN MEMORY OF OUR NUCLEAR S

Wishing you love and peace

#