

NEUTRONS IN LIGHT NUCLEI AND NEUTRON TRANSFER IN REACTIONS WITH LIGHT NUCLEI

V.V. Samarin, M.A. Naumenko

FLEROV LABORATORY of NUCLEAR REACTIONS Joint Institute for Nuclear Research, Dubna, Russia

International Seminar on Interaction of Neutrons with Nuclei: Neutron Spectroscopy, Nuclear Structure, Related Topics (ISINN-25), Dubna, Russia, May 22 – 26, 2017

Role of neutron transfer in dynamics of nucleus-nucleus collisions

- Leads to the transfer channels (stripping, pickup, multi-nucleon transfer)
- Leads to change in the potential energy of nuclei which
 - changes the cross-section of individual channels (e.g., fusion) and the total reaction cross section compared to the model of nuclei with "frozen" neutrons, which is important in the calculation of the cross sections;
 - may justify the use of phenomenological potentials depending on the energy and the orbital momentum within the optical model (OM), the distorted wave Born approximation (DWBA), etc.

All this attracts interest to neutron transfer processes from both experimentalists and theoreticians

Transfer + Fusion-Evaporation

Transfer to Au and to metastable states and resonances of ⁷He

These experimental data have been analyzed in this work

[1] N. K. Skobelev, A. A. Kulko, V. Kroha et al. J. Phys. G: Nucl. Part. Phys. 2011. V. 38. P. 035106. [2] Yu. E. Penionzhkevich, R. A. Astabatyan, N. A. Demekhina et al. Eur. Phys. J. A. 2007. V. 31. P. 185. Dubna

 $\Delta \overline{\Delta}$

60

[2] Yu. E. Penionzhkevich, Yu. G. Sobolev, V. V. Samarin, M. A. Naumenko. Bull. Russ. Acad. Sci. Phys. 2017 (in press).

Experimental data analyzed in the work

- Formation of isotopes:
 - ^{44,46}Sc in reaction ³He + ⁴⁵Sc,
 - ^{196,198}Au in reaction ³He + ¹⁹⁷Au,
 - ⁴⁶Sc in reaction ⁶He + ⁴⁵Sc,
 - ⁶⁵Zn in reaction ⁶He + ⁶⁴Zn,
 - ^{196,198}Au in reaction ⁶He + ¹⁹⁷Au.

- Involved channels:
 - neutron pickup,
 - neutron stripping,
 - fusion-evaporation.

Basics of time-dependent Schrödinger equation (TDSE) model

• Classical motion of centers of nuclear cores

$$m_{1}\ddot{\vec{r}_{1}} = -\nabla_{\vec{r}_{1}}V_{12}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right), \ m_{2}\ddot{\vec{r}_{2}} = -\nabla_{\vec{r}_{2}}V_{12}\left(\left|\vec{r}_{2}-\vec{r}_{1}\right|\right).$$

• Transfer of neutrons during collision is described by time-dependent Schrödinger equation with spin-orbit interaction [1]

$$i\hbar\frac{\partial}{\partial t}\Psi(\vec{r},t) = \left\{-\frac{\hbar^2}{2m}\Delta + V_1(\vec{r},t) + V_2(\vec{r},t) + \hat{V}_{LS}^{(1)}(\vec{r},t) + \hat{V}_{LS}^{(2)}(\vec{r},t)\right\}\Psi(\vec{r},t).$$

• The initial wave function is determined from shell model.

How to choose shell model mean field for ³He, ⁶He?

References [1] V. V. Samarin, EPJ Web Conf. 66, 03075 (2014); 86, 00040 (2015). [2] V. I. Zagrebaev, V.V. Samarin, W. Greiner. Phys. Rev. C 75, 035809 (2007). [3] V. V. Samarin. Phys. At. Nucl. 78,128 (2015). [4] M. A. Naumenko, V. V. Samarin, Yu. E. Penionzhkevich, N. K. Skobelev. Bull. Russ. Acad. Sci. Phys. 80, 264 (2016). [5] V. V. Samarin. PEPAN, in press (2016).

Results of calculations within shell model for nuclei ³He, ⁴He, ⁵He и ⁶He

Shell model for nuclei ³He, ⁴He, ⁵He and ⁶He: mean field potentials and levels for neutrons (solid lines) and protons (dashed lines).

For He projectiles For He projectiles $V(r) = \sum_{i=1}^{2} U_i [1 + \exp((r - R_i)/a_i)]^{-1}$ (sum of 2 Woods-Saxons) $V(r) = U [1 + \exp((r - R)/a)]^{-1}$ (Woods-Saxon) Parameters of shell model were chosen based on results of Feynman's continual integrals (FCI) method + + experimental data on neutron separation energies.

Feynman's continual integrals (FCI) method

Feynman's continual integral [1] is propagator - probability amplitude for a particle to travel from one point to another in a given time *t*

$$K(q,t;q_0,0) = \int Dq(t') \exp\left\{\frac{i}{\hbar} S[q(t')]\right\} = \left\langle q \left| \exp\left(-\frac{i}{\hbar} \hat{H}t\right) \right| q_0 \right\rangle$$

Euclidean time $t=-i\tau$

$$K_{\rm E}(q,\tau;q_0,0) = \lim_{\substack{N \to \infty \\ N\Delta\tau=\tau}} \left(\frac{m}{2\pi\hbar\Delta\tau}\right)^{N/2} \int \cdots \int \exp\left\{-\frac{1}{\hbar}\sum_{k=1}^{N} \left[\frac{m(q_k-q_{k-1})^2}{2\Delta\tau} - V(q_k)\Delta\tau\right]\right\} dq_1 dq_2 \dots dq_{N-1}$$

$$K_E(q,\tau;q,0) \rightarrow |\Psi_0(q)|^2 \exp\left(-\frac{E_0\tau}{\hbar}\right), \tau \rightarrow \infty$$

Parallel calculations by Monte Carlo method [3] using NVIDIA CUDA technology were performed on cluster <u>http://hybrilit.jinr.ru</u>

$$K_{\rm E}(q,\tau;q_0,0) \approx K_{\rm E}^{(0)}(q,\tau;q_0,0) \left\langle \exp\left[-\frac{\Delta\tau}{\hbar} \sum_{k=1}^{N} V(q_k)\right] \right\rangle_{0,N}$$

averaging over random trajectories with distribution in form of multidimensional Gaussian distribution [4]

$$K_{\rm E}^{(0)}(q,\tau;q_0,0) = \left(\frac{m}{2\pi\hbar\tau}\right)^{1/2} \exp\left[-\frac{m(q-q_0)^2}{2\hbar\tau}\right]$$

Euclidean propagator of free particle [2]

[2] D. I. Blokhintsev. Principles of Quantum Mechanics [in Russian]. Moscow, Nauka, 1976.

[3] S. M. Ermakov. Monte Carlo Method in Computational Mathematics [in Russian]. St. Petersburg, Nevskiy Dialekt, 2009.

[4] M. A. Naumenko, V. V. Samarin. Supercomp. Front. Innov. 2016. V. 3. No. 2. P. 80.

Unified set of effective two-body central potentials

Nucleon-nucleon

Model parameters

$$u'_1 = u_1 = 500, \ u'_2 = u_2 = -102, \ u'_3 = u_3 = -2,$$

 $b'_1 = 0.53, \ b_1 = 0.37, \ b'_2 = b_2 = 1.26, \ b'_3 = b_3 = 2.67.$

Nucleon-alpha-cluster

Results for ground state of 3 **He nucleus (p + p + n)**

Reasonable results and good agreement with experimental data are obtained

Probability density $|\Psi|^2$ for ground state of ³He (p + p + n)

Probability density $|\Psi|^2$ for ground state of ⁶He ($\alpha + n + n$)

Most probable configurations are α -cluster + dineutron (1) and cigar configuration (2). Configuration $n + {}^{5}$ He (3) has low probability.

Results of calculation of binding energies for nuclei ²H, ^{3,4,6}He, ⁶Li

$$b_0^{-1} \ln K_E(q,\tau;q,0) \rightarrow \ln |\Psi_0(q)|^2 - \tilde{E}_0 \tilde{\tau}, \ \tilde{\tau} \rightarrow \infty$$

slope coefficient gives ground state energy

Comparison of theoretical and experimental binding energies in unified set of potentials (*for alpha-cluster nuclei ⁶He and ⁶Li energy of separation into alpha particles and nucleons is given).

Atomic nucleus	Theoretical value, MeV	Experimental value [1], MeV
² H	2.22 ± 0.15	2.225
³ Н	8.21 ± 0.3	8.482
³ He	7.37 ± 0.3	7.718
⁴ He	30.60 ± 1.0	28.296
⁶ He*	0.96 ± 0.05	0.97542
⁶ Li*	3.87 ± 0.2	3.637

Good agreement with experimental data

[1] NRV web knowledge base on low-energy nuclear physics. URL: <u>http://nrv.jinr.ru/</u>

TDSE model basics

• Classical motion of centers of nuclear cores

$$m_{1}\ddot{\vec{r}_{1}} = -\nabla_{\vec{r}_{1}}V_{12}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right), \ m_{2}\ddot{\vec{r}_{2}} = -\nabla_{\vec{r}_{2}}V_{12}\left(\left|\vec{r}_{2}-\vec{r}_{1}\right|\right).$$

• Transfer of neutrons during collision is described by time-dependent Schrödinger equation with spin-orbit interaction [1]

$$i\hbar\frac{\partial}{\partial t}\Psi(\vec{r},t) = \left\{-\frac{\hbar^2}{2m}\Delta + V_1(\vec{r},t) + V_2(\vec{r},t) + \hat{V}_{LS}^{(1)}(\vec{r},t) + \hat{V}_{LS}^{(2)}(\vec{r},t)\right\}\Psi(\vec{r},t).$$

• The initial wave function is determined from shell model. Parameters of shell model were chosen based on results of Feynman's continual integrals method for ^{3,6}He + experimental data on charge radii and neutron separation energies.

Refere	nces
[1] V. V	. Samarin, EPJ Web Conf. 66, 03075 (2014); 86, 00040 (2015).
[2] V. I.	Zagrebaev, V.V. Samarin, W. Greiner. Phys. Rev. C 75, 035809 (2007).
[3] V. V	. Samarin. Phys. At. Nucl. 78,128 (2015).
[4] M. A	. Naumenko, V. V. Samarin, Yu. E. Penionzhkevich, N. K. Skobelev. Bull.
Russ. A	Acad. Sci. Phys. 80, 264 (2016).
[5] V. V	. Samarin, PEPAN, in press (2016).

14

Calculation of probability and cross section for neutron pickup in reaction ³He+⁴⁵Sc

³He including only 1 neutron in field of heavier core, makes it possible to study transfer process in simplest case

Calculation of probability and cross section for neutron stripping in reaction ³He+⁴⁵Sc

³He including only 1 neutron in field of heavier core, makes it possible to study transfer process in simplest case

Calculation of cross sections for formation of isotopes ⁴⁴Sc and ⁴⁶Sc in reaction ³He + ⁴⁵Sc

Good agreement with experimental data. Contribution of fusion-evaporation is high.

[1] (Experiment) N. K. Skobelev, A. A. Kulko, Yu. E. Penionzhkevich et al. Phys. Part. Nucl. Lett. 2013. V. 10. P. 410.
[2] (Evaporation code) NRV web knowledge base on low-energy nuclear physics. URL: <u>http://nrv.jinr.ru/</u>

Calculation of cross sections for formation of isotopes ¹⁹⁶Au and ¹⁹⁸Au in reaction ³He + ¹⁹⁷Au

Good agreement with experimental data. Contribution of fusion-evaporation is negligible.

[1] (Experiment ■) N. K. Skobelev, Yu. E. Penionzhkevich, E. I. Voskoboynik et al. Phys. Part. Nucl. Lett. 2014. V. 11. P. 114.
[2] (Experiment □) Y. Nagame, K. Sueki, S. Baba, and H. Nakahara. Phys. Rev. C. 1990. V. 41. P. 889.
[3] (Evaporation code) NPV web knowledge base on low-energy nuclear physics. UPL : http://nrv.iinr.ru/

[3] (Evaporation code) NRV web knowledge base on low-energy nuclear physics. URL: <u>http://nrv.jinr.ru/</u>

Calculation of probability and cross section for neutron stripping in reaction ⁶He + ¹⁹⁷Au

⁶He (2 neutrons, halo) is more complicated case compared with ³He

Calculation of probability and cross section for neutron pickup to metastable states and resonances in reaction ⁶He + ¹⁹⁷Au

⁶He (2 neutrons, halo) is more complicated case compared with ³He

Calculation of probability and cross section for neutron pickup to metastable states and resonances in reaction ⁶He + ¹⁹⁷Au

Evolution of probability density for neutron of ¹⁹⁷Au from level $3p_{3/2}$ in collision ⁶He + ¹⁹⁷Au at $E_{\rm cm} = 30 \text{ MeV} > V_{\rm B}.$

⁶He (2 neutrons, halo) is more complicated case compared with ³He

Calculation of cross sections for formation of isotopes ⁴⁶Sc in reaction ⁶He + ⁴⁵Sc and ⁶⁵Zn in reaction ⁶He + ⁶⁴Zn

Good agreement with experimental data. Contribution of fusion-evaporation is noticeable.

[1] (Experiment with ⁴⁵Sc) N. K. Skobelev, A. A. Kulko, V. Kroha et al. J. Phys. G: Nucl. Part. Phys. 2011. V. 38. P. 035106.

[2] (Experiment with ⁶⁴Zn) V. Scuderi, A. Di Pietro, P. Figuera et al. Phys. Rev. C. 2011. V. 84. P. 064604.

[3] (Evaporation code) NRV web knowledge base on low-energy nuclear physics. URL: http://nrv.jinr.ru/

Calculation of cross sections for formation of isotopes ¹⁹⁶Au and ¹⁹⁸Au in reaction ⁶He + ¹⁹⁷Au

Reasonable agreement with experimental data. Contribution of fusion-evaporation is low. Contribution of other channels in ¹⁹⁶Au data?

[1] (Experiment) Yu. E. Penionzhkevich, R. A. Astabatyan, N. A. Demekhina et al. Eur. Phys. J. A. 2007. V. 31. P. 185.
[2] (Evaporation code) NRV web knowledge base on low-energy nuclear physics. URL: http://nrv.jinr.ru/

NRV knowledge base http://nrv.jinr.ru

The NRV web knowledge base is a unique interactive research system:

- Allows to run complicated computational codes
- Works in any internet browser supporting Java plugin
- Has graphical interface for preparation of input parameters and analysis of output results
- Combines computational codes with experimental databases on properties of nuclei and nuclear reactions

nrv.jinr.ru - NRV: Optical Model of Elastic scattering - Microsoft Internet Expl

- 🗆 ×

26

Contains detailed description of models

Benefits of TDSE approach

- quantum description of several independent external neutrons,
- small 3D mesh step (0.1 0.2 fm, smaller than the length of the probability density oscillations),
- classical description of the motion of centers of nuclei,
- may be used for light nuclei,
- fast calculation,
- intuitive visualization of dynamics.

Conclusions

- The energy and the square modulus of the wave function of the ground states of few-body ³He and cluster halo ⁶He nuclei have been calculated.
- These results were used to adjust the shell model parameters for neutrons in ³He and ⁶He.
- Neutron transfer probabilities and transfer cross sections were calculated within the timedependent Schrödinger equation method.
- Fusion-evaporation was taken into account using the NRV evaporation code.
- Results demonstrate good agreement with experimental data on formation of isotopes:
 - 44,46 Sc in reaction 3 He + 45 Sc,
 - ^{196,198}Au in reaction ³He + ¹⁹⁷Au,
 - ⁴⁶Sc in reaction ⁶He + ⁴⁵Sc,
 - ⁶⁵Zn in reaction ⁶He + ⁶⁴Zn,
 - ^{196,198}Au in reaction ⁶He + ¹⁹⁷Au.

Thank You

