

Prompt Neutron Emission in the Reaction ²³⁵U(n,f)

Alf Göök, F.-J. Hambsch, S. Oberstedt

European Commission JRC - Geel

ISINN-25

Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research Dubna, Russia 22-26 May 2017

100

dit.

数

Outline

- Introduction & Motivation
- Experimental Setup
 - SCINTIA array
 - 3D ionization chamber
- Experimental Results
 - PFN angular distributions
 - PFN multiplicity correlations with fission fragments
- Conclusions

Introduction & Motivation

Prompt Fission Neutron (PFN) multiplicity in resonances

Data relevant for improved evaluations as requested by the OECD/Working Party on Evaluation Cooperation (WPEC)

- ²³⁹Pu strong fluctuations of neutron multiplicities
- ²³⁵U minor fluctuations of neutron multiplicities
- Measure neutron multiplicity as a function of neutron energy
- ²³⁵U, ²³⁹Pu fluctuations of fission fragment properties (TKE and mass distribution)
- Study correlations between the fragment properties and the neutron multiplicities

Introduction & Motivation

PFN multiplicity correlations with fragment observables

Fission fragment de-excitation models

- Evaluation tools
- Detailed modelling (CGMF, Fifrelin, Freya...)
 - successfully reproducing correlations
 - in the case ²³⁵U(n,f)
 - » difficulties: in particular v(TKE)

Lemaire et al. (2005)

"...a dramatic deviation between calculation and experiment on v is observed at low TKE that would indicate the presence of additional opened channels"

Kornilov et al. (2007)

"The incorporation of the SCN emission leads to a much better agreement between theoretical and experimental data for v(TKE) in the high energy range. However, the assumption of SCN emission at high TKE should be confirmed with direct experimental data"

Incident Neutron Energy(eV)

Experimental Setup – SCINTIA array

Fission fragments detection

Twin Ionization chamber

Prompt neutron detection

- Array of 22 scintillators
 - > 18 LS-301 (NE-213 eq.)
 - 3 p-therphenyl
 - > 1 stilbene
- Detection Threshold:

0.5 MeV

Neutron Detection Response

Neutron detection response is modelled with GEANT4

The simulations are benchmarked against standard PFNS of ²⁵²Cf(sf)

Multiple scattering correction calculated with GEANT4

3D - Ionization Chamber

The experimental method is based on kinematic reconstruction of the neutron emission in the rest frame of the fission fragment

Twin Ionization Chamber

- Large Geometrical Efficiency
- ✓ Timing Resolution ~1 ns (FWHM)
- Energies and Masses of fission fragments
- Polar angle θ of fission axis orientation

Position Sensitive Electrode

Replaces anodes

Projection of fission-axis on the (x,y) – plane

Mass Determination

Fragment masses determined via 2E-technique

- Corrections
 - Energy loss in sample & backing
 - Neutron Evaporation
- Good agreement with high resolution (2v) measurement
- Resolution: ~5 u (FWHM) mainly limited by PFN emission

²³⁵U(n,f) - PFN angular distributions

European Commission

Analysis of PFN angular distributions

Assuming emission from accelerated fragments

Simplified model

PFNS in c.m. determined from small angle data

Analysis of PFN angular distributions

- 6% of the total number of neutrons
- Assuming emission at 95 % of full acceleration
 - Marginally better description

Analysis of PFN angular distributions

Similar result for selection of mass pairs

- Underestimation of yield at large angles:
 - > 6% of the total number of neutrons
- > Underestimation of $\langle E_n \rangle$ at large angles

Results in c.m. - frame

- Event by Event transformation into the c.m. frame
- > Selection $\cos\theta_{c.m.} \ge 0$
- Measured distribution consist of neutron from both fragments
 - Main contribution is from fragment directed towards detector
 - Complimentary fragment neutrons are treated as perturbation
 - Probability of detecting neutron from complementary fragment is calculated based on assumption of isotropic emission from fully accelerated fragments
- Resulting angular distribution shows small anisotropy in c.m.

Multiplicity vs. Fragment Mass

Neutrons per fragment

Saw-tooth distribution

Pronounced minima around $A_L = 80$ and $A_H = 130$

Shoulders around A = 100 and A = 140

 A_L =100 and A_H =140

Neutrons per fission

Flat distribution

Pronounced minimum around $A_{\rm H}$ =130

Close to linear dependence

The slope is much steeper than earlier studies

The difference cannot be explained by difference in incident neutron energy

- Wide TKE-distributions
- Significant Yield at TKE>Q_{max}
- \Rightarrow Resolution broadening
- Decreased slope
- Increased neutron yield at Q_{max}

Tailing of TKE distribution

- Energy degraded scattered fission fragments
- Neutron yield should approach average nubar
- Drop in nubar at low TKE
- Present also in our data

Comparison with available de-excitation models

- Major discrepancy between theory and experiment resolved
- > No additional sources of neutrons necessary at high TKE

European Commission

For selected fragment pairs

Slope gives directly the change in TXE per emitted neutron $TXE = Q_0 - TKE$ dTXE dTKE

$$\frac{1}{\mathrm{d}\,\overline{\nu}_T} = -\frac{1}{\mathrm{d}\,\overline{\nu}_T}$$

Energy cost per neutron

Average energy necessary to emit a neutron (8.3 ± 0.1) MeV

Calculations based on tabulated neutron binding energies (AME2012)¹ underestimates data

Pointing to a more complex dependence of prompt neutron/gamma competition²

 $E_{\gamma}(A, \text{TKE}) = [1.1 \,\overline{\nu}(A, \text{TKE}) + 1.75] \,\text{MeV}$

- 1.) G. Audi et al., Chinese Physics C 36 (2012) 1287
- 2.) H. Nifenecker et al, 3rd IAEA Symp. Phys. And Chem. of Fission 2 (1973) 117

Conclusions

Broad features of PFN angular distributions can be **described by** the assumption of **isotropic emission from fully accelerated fragments**, but underestimates the data at large angles and high energies. The **underestimation amounts to 6% of the total number of neutrons**.

The **saw-tooth** shape of the average number of neutrons emitted per fragment show **more pronounced minima at** A_{H} =130 u and A_{L} =80 u as well as additional structures around A_{H} =140 u and A_{L} =100 u.

The TKE dependence of the number of neutrons emitted per fission shows an inverse slope dTKE/dv ca. 35% smaller than observed in earlier studies. The difference can be explained by improved fission fragment TKE resolution in the present experiment. There is no indication that additional open channels are necessary to describe the dependence.

The present results should have strong impact on the modelling of both prompt neutron and prompt γ -ray emission in fission due to the strong differences observed in the TKE dependence of the prompt neutron multiplicity.

The European Commission's science and knowledge service

Thank you for the attention!

AII GOOK, F.-J. Hallidsch, S. Odersteut

ISINN-25

Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research Dubna, Russia 22-26 May 2017

European Commission

100

Position sensitive ionization chamber

Position sensitive ionization chamber

Distribution of fission events on the target plane. Determined by linear interpolation between the coordinates of fission fragments detected on opposite side of the ionization chamber.

²⁵²Cf(sf) : Validation of method

- Results show consistency with literature data
- Specifically with methods that do not suffer from neutron energy detection threshold
 - (Dushin et al.) Gd-loaded 4π scintillator tank

Resonance Energy vs. Fragment TKE

PFN angular distributions

Mass Distributions in the Resonances

- Fluctuations of the TKE can be explained by changes in the mass-yield
- TKE increase is correlated with increased yield around $A_{\rm H}$ =132 u
- Verifies earlier results Hambsch et al. NPA491 (1989) 56

Experimental setup GELINA neutron time-of-flight facility

Twin Ionization Chamber

- Fission fragments
 - Energies
 - Masses 2E-technique
 - Fission axis orientation

Neutron Detector Array SCINTIA

- 12 x Scintillators
- Prompt fission neutrons
 - Energy (time-of-flight)

