

Neutron Activation Analysis for Ecological State Assessment of Coastal Ecosystems of the Black Sea

26 slides

Pavel Nekhoroshkov, Alexandra Kravtsova, Marina Frontasyeva, Octavian Duliu, Alexander Kamnev, Nikita Yushin, Inga Zinicovscaia

- Frank Laboratory of Neutron Physics of Joint Institute for Nuclear Research, Dubna
- Kovalevsky Institute of Marine Biological Research, Sevastopol
- Biological and Soil Science Faculties of Moscow State University, Moscow

JINR PRIZES 2016

Applied Physics Research

II prize: A. Kravtsova, P. Nekhoroshkov, M. Frontasyeva, I. Zinicovscaia, N. Yushin, O. Bunkova, I. Stukolova, A. Yakovlev, A. Kamnev

"Neutron activation analysis for ecological state assessment of coastal ecosystems of the Black Sea".

- Kravtsova, A. V., N. A. Mil'chakova, and M. V. Frontas' eva. Multielement instrumental neutron activation analysis of macroalgae Cystoseira used as biomonitor of the Black Sea coastal waters pollution (South-Western Crimea, Sevastopol). No. JINR-R--18-2013-38. Frank Lab. of Neutron Physics, 2013.
- Nekhoroshkov P. S., Kravtsova A. V., Frontasyeva M. V., Tokarev Y. N. Neutron activation analysis and scanning electron microscopy of phytoplankton in the coastal zone of Crimea (the Black Sea) // American Journal of Analytical Chemistry. 2014. Vol. 5(5). P. 323 -334.
- Kamnev A.N., Frontasyeva M.V., Kravtsova A.V., Nekhoroshkov P.S., Bunkova O.M., Stukolova I.V., Yakovlev A.S., Zinicovscaia I.I., Yushin N.S. Assessment of elemental composition of macrophytes, soil and bottom sediments along a transect in the coastal zone of Anapa, studied by neutron activation analysis // Issues of modern algology. 2014. № 3S (7S). Proceedings of the International Conference «Ecological physiology of aquatic phototrophic: distribution, stocks, chemical composition and use» III Sabininskie reading.
- Kravtsova, Alexandra, Nataliya Milchakova, and Marina Frontasyeva. "Elemental accumulation in the Black Sea brown algae Cystoseira studied by neutron activation analysis." Ecological Chemistry and Engineering S 21.1 (2014): 9-23.
- Nehoroshkov P.S., Frontaseva M.V., Tokarev Yu.N. Biophysical parameters and multi-element composition of the Black Sea phytoplankton communities in the Crimea coastal area // Water: chemistry and ecology. 2015. № 8. P. 11-20.
- Kravtsova, Alexandra V., Nataliya A. Milchakova, and Marina V. Frontasyeva. "Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea)." Marine pollution bulletin 97.1 (2015): 548-554.
- Nekhoroshkov, Pavel, et al. "Assessment of Minor and Trace Elements in Aquatic Macrophytes, Soils and Bottom Sediments Collected along Different Water Objects in the Black Sea Coastal Zone by Using Neutron Activation Analysis." American Journal of Analytical Chemistry 8.04 (2017): 225.

Plan

- General principles of development of coastal ecosystems
- Material and Methods: Neutron Activation Analysis
- Material and Methods: sampling
- Results: Substrates (Soils, BS, Water)
- Results: Objects (Aquatic Plants, Macrophytes, PHytoplankton)

Coastal ecosystems

Hypoxia / anoxia in bottom waters enhancing sediment nutrient flux

freshwater

residence time

Sediment deposition and long

Bediment nutrient, flux from

remineralised organic matter

Animal manure / fertilizer

runoff leading to elevated

Wetlands drained for crops-

Modification of Hydrology:

Toxic Industrial Byproducts

groundwater NO.

particularly dams.

Nitrogen, phosphorus or light limitation

Beagrass loss due to nutrient. enhancement of phytoplankton

Reforestation expanding

N limitation predominant in coastal ALCOMPTO:

Salt marsh accretion through peat. formation and sea level rise.

Persistent upweiling

Aquaculture expanding

Seasonal stratification

and epipitytes

Aim and tasks

to determine the ranges of variability of concentrations of different groups of elements in connection with affinity of pollution sources and properties of autotrophic biota

- Selection of model zones
- Determination (checking) of organisms-biomonitors
- Estimation of the levels of accumulation of elemental groups in these organisms by different zones
- The comparative analysis of data with reference values

Neutron Activation Analysis

- Elemental contents of macroalgae, phytoplankton and aquatic plants were determined by means of neutron activation analysis performed at the reactor IBR-2 of the Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna
- Macroalgae and aquatic plants were dried and prepared by using standards technique which was performed for vegetation
- The filters with phytoplankton were divided into two equal portions. The concentrations of elements in filter blanks were taken into account
- All samples were packed in plastic bags (to determine the short-lived isotopes) and into aluminum cups (to determine the long-lived isotopes).
- Quality control was provided by using standard reference materials of different origin : 433, 690CC, 1547, 1572, 1632b, 1633b, 2709, 2710

Model zones and Sampling

Anapa model recreational coastal zone

Coastal transect: from dump to beach

- Aquatic plants: cane
 Phragmites australis, sedge
 Carex canescens
- Macroalgae: Cladophora sericea
- ✓ Bottom sediments and soils

Soil or BS milieu (substrate) in coastal zone

Enrichment of elements (concentrations/upper continental crust) at the polluted station (7) and station on the beach (2c):

- Se, Br and I: feature of accumulation of marine elements in coastal area
- As, Mo and Sb: anthropogenic origin, pesticides, oil refining

Maximum permissible levels of elements in soils established in different countries

	Flowert	Original data (<i>n=40</i>)			Russia	Germany	Netherlands	USA	Finland
	Element -	min	max	median	(Kolesnikov et al., 2012)		(Mynbayeva et al., 2013)		
	V	10	150	30	150	-	-	_	100
/	Cr	6	105	30	90	100	250	1000	100
	Mn	150	900	370	1500	-	-	-	-
	Co	1.6	24	4	-	50	50	-	20
/	Ni	3	80	12	85	100	100	-	50
	Zn	6	270	50	100	300	500	2500	200
	As	3	36.8	7	2	50	30	30	5
	Se	0.06	2.31	0.25	-	10	-	-	-
	Mo	0.2	15.7	1.1	-	10	40	-	-
	Sb	0.1	2.1	0.6	4.5	-		-	2
	Ba	150	690	250	-	-	400	-	-

Aquatic vegetation: accumulation features

Traits of the two types of biomonitors: Cane – root-biomonitor, Sedge – leave-biomonitor

Special "biochemical signature" of aquatic vegetation in recreational coastal zone

Special "biochemical signature" of aquatic vegetation in recreational coastal zone

RP – reference plant by B. Markert (1992)

Special "biochemical signature" of aquatic vegetation in recreational coastal zone

RP – reference plant by B. Markert (1992)

Macroalgae

Macroalgae – marine plants without roots

Fig. 1. Al, Fe and As in Cystoseira crinita "stems" at various ages From Kravtsova et al., 2014

Anthropogenic effects in coastal zones based on biomonitoring of macroalgae

Maximal values in different coastal organisms of elements based on our data (in comparison with substrate)

Aquatic plants	Cl, V, Fe, Co, As, Se, Br, Sr, I
Phytoplankton	V, Cr, Mn, Br, Mo, I, Sb
Macroalgae	V, Mn, Fe, Zn, As, Sr, Se
Important	V, Cr, Fe, Mn, Co, Ni, As, Se, Cu,
elements	Zn, Mo, Sr, I,

Terrigenous	Biologically important	Anthropogenic		
Al, K, Ca, Sc, Ti,	Co, Cr, Cu, Zn, Mn,	V, Co, Ni, Cu, Zn, As,		
Rb, Sr, Zr, Cs, Th, U	Fe, Se, Mo, I	Sr, Sb		

Conclusions

- Neutron Activation Analysis fits well to assessment of elemental accumulation in organisms from coastal ecosystems. Coastal water objects could be analyzed by using NAA in complex study
- Roots and leaves of Phragmites australis are good accumulators of Na, Ti, and Br and, in contrast, contain lower levels of Zn, Rb, and Ba than in RP. In Carex canescens roots and leaves the levels of Na, Ti, As, Th, and U are one order of magnitude higher than in RP. In contrast, Mg, K, Mn, Zn, Rb, Cs, and Ba show lower levels in comparison to RP concentrations
- Cladophora sericea accumulated CI in small relative amounts in comparison to Br and I. Phragmites australis in the major cases selected I and CI regardless Br. In that sense the Carex canescens demonstrated the most flexible ability for accumulation of these halogens
- The environmental levels of the 19 TE in Cystoseira spp. From relatively clean waters from marine protected areas, determined in this study, could be used for the further biomonitoring objectives in the Black Sea region
- The revealed peculiarities of elemental accumulation in different morphostructural parts of Cystoseira spp. and the relationship between the concentrations of some TE in algae with geological composition of the coast (that is, the type of rocks) improved our knowledge regarding the use of Cystoseira spp. as a biomonitor of coastal waters pollution
- Using such organisms as phytoplankton, macroalgae and aquatic vegetation (as basic elements forming primary production) in biomonitoring studies the environmental states of coastal zones and special fingerprints in different regions could be analyzed

Acknowledgement

- To our chemists Inga Zinicovscaia and Nikita Yushin for preparing the samples
- To our colleague Octavian Duliu for help with analysis of data
- To our colleagues from Moscow State University for sampling and information
- To all which were involved in this cycle of works

To you for your attention!

Spatial variability of elemental contents in coastal organisms (biota)

- Elemental Flows
 - Along coast
 - Storms and upwellings
 - River flows
 - Atmospheric deposition
- Terrigenous particles
- Transition zones

Shore – Transitional zone – buffer water area

Maximal and median elemental concentrations (µg/g dry weight) in soils from Anapa region (our data) and values for non-polluted and polluted soils from the Southern part of Russia

Elements	Soils in An (<i>n</i> =		Soils in the Southern part of Russia ¹			
	Max	Median	Non-polluted	Low polluted	Moderate polluted	
V	150	30	<200	200-300	300-850	
Cr	105	30	<70	70-90	90-170	
Mn	900	370	<1000	1000-1600	1600-1800	
Со	24	4	<18	18-36	36-250	
Ni	80	12	<50	50-100	100-700	
Zn	270	50	<125	125-200	200-850	
As	36.8	7.1	<17	17-30	30-160	
Se	2.31	0.25	<0.7	0.7-1.4	1.4-9	
Sr	840	510	<250	240-450	450-3200	
Мо	15.7	1.1	<8	8-400	>400	
Sb	2.1	0.6	<5	5-12	12-200	
Ba	690	250	<900	900-1500	1500-4000	

¹ elements in soil according to (Kolesnikov et al., 2012)

Special traits of halogens accumulation in aquatic plants

Peculiarities of elemental accumulation in phytoplankton

nonferrous metallurgy, foundry, pesticides and herbicides)

Related to local source of pollution </ <p>
Related to deep water convection and resuspend of bottom sediments in the mouth area