

Progress of Neutron Reaction Data Measurement at CIAE

Xichao Ruan

China Nuclear Data Center, Key Laboratory of Nuclear Data China Institute of Atomic Energy (CIAE)

The 26th International Seminar on Interactions of Neutrons with Nuclei May 28th – June 1st, 2018, Xian, China

Contents

- Introduction
- Spectrometers and recent progress of nuclear data measurement.
- Summary

Introduction

Main purpose of ND production in China

- Nuclear energy system development
 - CIADS(Chinese Initiative Accelerator Driven System)
 - TMSR(Thorium Molten Salt Reactor)
 - Fusion reactor
 - Other new nuclear energy systems
- Nuclear science study
- Nuclear technology applications

Organization of ND lab at CIAE

Neutron sources used for ND measurement at CIAE

In operation:

- 1. HI-13 2×13 MV tandem accelerator: 5-40 MeV (DC and pulsed)
- 2. Reactor: High flux thermal neutrons
- 3. Neutron generator: 14 MeV and 2.5 MeV (DC and pulsed)
- 4. 2×1.7 MV tandem: 10 keV-5 MeV and 14-20 MeV (DC and pulsed)
- 5. China Spallation Neutron Source at IHEP (CSNS)

Upcomming:

1. 100 MeV proton Cyclotron at CIAE

HI-13 tandem accelerator

Three neutron beam lines designed: 1.Mono-energetic neutrons (70-100 MeV) 2.White neutrons with 15 and 30 meters FP.

Various ND measurements are planed with these neutron beam lines

600 kV Cockcroft-Walton neutron generator

- Provide 14 and 2.5 MeV neutrons for ND measurement, detector calibration and other applications
- Provide 6.13 MeV gammas for detector calibration

 > 1000 hours beam time every year for different users

lons	p and d
Current	Maximum 1 mA (DC) ~30 μA (pulsed)
Pulse width	~2 ns
Neutron yield	1011 n/s for DC14 MeV109 n/s for pulsed14 MeV109 n/s for DC2.5 MeV108 n/s for pulsed108 m/s for pulsed

The back-streaming neutron beam of CSNS

Summary of neutron sources for ND measurement

facility	energy	intensity (1/s/sr)	
Reactors	thermal	10 ¹⁴ n/cm ² /s	
HI-13	8-26 MeV (d+D) 4-23 MeV (n+T)	108 ano-energe	
	22-42 MeV (d+T)	mon sour	
	3-6 Meved Noted Note	2 Neur	
2×1.7MV	to noi etic, w.	10 ⁹	
rom themor	Oenerer (p+Li)	108	
quasi-me	2.5, 14 MeV	10 ⁸ , 10 ¹⁰	
CSNS	0.5 eV-100 MeV	10 ⁷ n/cm ² /s	
Cyclotron	0.1-20 MeV	10 ¹²	

Spectrometers and recent progress of ND measurement

HPGe detector for gamma spectroscopy

- Well calibrated
- Excitation function measurement
- Fission yield
 measurement
- Decay data measurement

Excitation function (94 neutron reactions, 18 charged particle reactions)

²³ Na(n,2n) ²² Na	²⁴ Mg(n,p) ²⁴ Na	²⁷ Al(n, a) ²⁴ Na	⁴⁵ Sc(n,2n) ^{44g,} Sc	⁴⁵ Sc(n,2n) ^{44m} Sc	⁴⁵ Sc(n,2n) ^{44m+g} Sc
⁴⁶ Ti(n,p) ⁴⁶ Sc	⁴⁷ Ti(n,p) ⁴⁷ Sc	⁴⁸ Ti(n,p) ⁴⁶ Sc	⁵¹ V(n,a) ⁴⁸ Sc	⁵⁵ Mn(n,2n) ⁵⁴ Mn	⁵⁴ Fe(n,p) ⁵⁴ Mn
⁵⁴ Fe(n,a) ⁵¹ Cr	⁵⁶ Fe(n,p) ⁵⁵ Mn	⁵⁹ Co(n,2n) ⁵⁸ Co	⁵⁹ Co(n,p) ⁵⁹ Fe	⁵⁹ Co(n,a) ⁵⁶ Mn	⁵⁸ Ni(n,2n) ⁵⁷ Ni
⁵⁸ Ni(n,p) ⁵⁸ Co	⁵⁸ Ni(n,x) ⁵⁷ Co	⁶⁰ Ni(n,p) ⁶⁰ Co	⁶² Ni(n,a) ⁵⁹ Co	⁶² Ni(n, a) ⁵⁹ Fe	⁶³ Cu(n,a) ⁶⁰ Co
⁶⁶ Zn(n,2n) ⁶⁵ Zn	⁶⁷ Zn(n,p) ⁶⁷ Cu	⁷⁰ Zn(n,2n) ^{69m} Zn	⁷¹ Ga(n,r) ⁷² Ga	⁸⁵ Rb(n,2n) ^{84m} Rb	⁸⁵ Rb(n,2n) ^{84m+g} Rb
⁸⁵ Rb(n,p) ^{85m} Kr	⁸⁵ Rb(n, a) ⁸² Br	⁸⁷ Rb(n,2n) ⁸⁶ Rb	⁸⁷ Rb(n,p) ⁸⁷ Kr	⁸⁹ Y(n,2n) ⁸⁸ Y	⁹⁰ Zr(n,2n) ⁸⁹ Zr
⁸⁹ Zr(n,2n) ⁸⁸ Zr	⁹⁶ Zr(n,2n) ⁹⁵ Zr	⁹² Mo(n,p) ⁹² Nb	⁹⁸ Mo(n,r) ⁹⁹ Mo	⁹³ Nb(n,2n) ^{92m} Nb	⁹³ Nb(n,a) ^{90m} Y
¹⁰⁹ Ag(n,2n) ^{108m} Ag	¹¹³ ln(n,2n) ^{112m} ln	¹¹³ ln(n,n') ^{113m} ln	¹¹⁵ In(n,2n) ^{114m} In	¹¹⁵ ln(n,n') ^{115m} ln	¹¹⁵ ln(n,r) ^{116m} ln
¹¹⁵ In(n,p) ¹¹⁵ Cd	¹¹⁵ In(n,a) ¹¹² Ag	¹²⁷ l(n,2n) ¹²⁶ l	¹²⁴ Xe(n,2n) ¹²³ Xe	¹³² Ba(n,2n) ¹³¹ Ba	¹³⁴ Ba(n,2n) ^{133m} Ba
¹³⁴ Ba(n,2n)1 ^{33m+g} Ba	¹³⁴ Ba(n,p) ^{134m+g} Cs	¹³⁴ Ba(n,a) ^{131m} Xe	¹³⁷ Ba(n,p) ¹³⁷ Cs	¹³⁶ Ba(n,p) ¹³⁶ Cs	¹³⁸ Ba(n,a) ¹³⁵ Xe
¹³⁶ Ce(n,2n) ¹³⁵ Ce	¹³⁸ Ce(n,2n) ^{137m} Ce	¹⁴⁰ Ce(n,2n) ¹³⁹ Ce	¹⁴⁰ Ce(n,p) ¹⁴⁰ La	¹⁴² Ce(n,2n) ¹⁴¹ Ce	¹⁵¹ Eu(n,2n) ^{150m} Eu
¹⁵¹ Eu(n,r) ^{152m} Eu	¹⁵¹ Eu(n,r) ^{152g} Eu	¹⁵³ Eu(n,2n) ^{152g} Eu	¹⁵³ Eu(n,r) ¹⁵⁴ Eu	¹⁵⁹ Tb(n,2n) ¹⁵⁸ Tb	¹⁵⁹ Tb(n,r) ¹⁶⁰ Tb
¹⁶⁵ Ho(n,r) ^{166m} Ho	¹⁶⁹ Tm(n,2n) ^{168m} Tm	¹⁶⁹ Tm(n,3n) ¹⁶⁷ Tm	¹⁶⁹ Tm(n,r) ¹⁷⁰ Tm	¹⁷⁵ Lu(n,2n) ^{174m+g} Lu	¹⁷⁶ Hf(n,2n) ¹⁷⁵ Hf
¹⁸⁰ Hf(n,r) ¹⁸¹ Hf	¹⁷⁹ Hf(n,2n) ^{178m2} Hf	¹⁸⁰ Hf(n,2n) ^{179m2} Hf	¹⁸¹ Ta(n,2n) ^{180m} Ta	¹⁸¹ Ta(n,p) ¹⁸¹ Hf	¹⁸² W(n,n'a) ^{178m2} Hf
¹⁸⁵ Re(n,2n) ^{184m} Re	¹⁸⁵ Re(n,2n) ^{184m+g} Re	¹⁸⁷ Re(n,2n) ^{186g} Re	¹⁸⁷ Re(n,2n) ^{186m} Re	¹⁹³ lr(n,2n) ^{192m2} lr	Pt(n,x) ^{195m} Pt
¹⁹⁸ Pt(n,2n) ¹⁹⁷ Pt	¹⁹⁷ Au(n.2n) ¹⁹⁶ Au	¹⁹⁷ Au(n,3n) ¹⁹⁵ Au	²⁰⁴ Pb(n,2n) ²⁰³ Pb		

⁵¹ V(d,2n) ⁵¹ Cr	⁸⁹ Y(p,n) ⁸⁹ Zr	⁸⁹ Y(p,2n) ⁸⁸ Zr	⁸⁹ Y(p,pn) ⁸⁸ Y	⁵¹ V(p,n) ⁵¹ Cr	Fe(p,x) ⁵⁷ Co
Fe(p,x) ⁵⁴ Mn	Fe(p,x) ⁵⁵ Co	Fe(p,x)⁵6Co	²⁷ Al(d,pa) ²⁴ Na	Ti(p,x) ⁴⁸ V	Ti(d,x) ⁴⁸ V
Mo(p,x) ^{95m,g} Tc	Mo(p,x) ^{96g} Tc	Мо(р,х) ⁹⁹ Мо	Mo(d,x) ^{95m,g} Tc	Mo(d,x) ^{96g} Tc	Mo(d,x) ⁹⁹ Mo

Excitation function measurement

1. 69Ga(n,2n)68Ga cross section measurement

Method: activation Neutron source: d-T reaction, 14.1 and 14.9 MeV Measurement: HPGe detector Findings: the 511 keV gammas can't be used, the branching ratio of 68Ga decay should be re-evaluated Evaluation: New evaluation has been proposed

Energy of Neutron (MeV)

Excitation function measurement

2. ²⁴¹Am(n,g)^{242g}Am cross section measurement

Method: activation Neutron source: 49-2 reactor at CIAE, 5×10¹⁰ n/cm²/s Measurement: Si-Au detector Result: Preliminary result obtained

Fission yields

Nuclei	En	FY	Method
U-238	Fission spectrum, 3, 5, 8, 14MeV	⁹⁵ Zr, ⁹⁹ Mo, ¹⁴⁰ Ba, ¹⁴⁷ Nd etc.	RC, γ
U-235	Thermal, 0.5, 1, 1.5, 3, 5, 8, 14MeV	⁹⁵ Zr, ⁹⁹ Mo, ¹⁴⁰ Ba, ¹⁴⁷ Nd etc.	Γ
U-235、238	Thermal, 3, 14MeV	^{85m,87,88} Kr, ^{135,138} Xe etc. (gas yield)	γ
Th-232	14 MeV	⁹⁵ Zr, ⁹⁹ Mo, ¹⁴⁰ Ba, ¹⁴⁷ Nd etc.	γ
U-235,Pu-239	Thermal	⁹⁵ Y, ¹³⁸ Cs, ¹⁰¹ Mo, ¹⁴² La etc. (short life nuclei)	RC, γ

Decay data

Measurement and evaluation of branching ratio of $^{56}\mathrm{Co},~^{66}\mathrm{Ga}.$ The uncertainty was reduced from 2%($^{56}\mathrm{Co})$ and 3% ($^{66}\mathrm{Ga})$ to 1% and 1.3%.

Fission yields measurement

The fission yields of ²³⁵U at 3 MeV, 14 MeV and ²⁵²Cf spontaneous fission neutrons, ²³²Th at 14 MeV neutrons were measured.

Combined with our previous measurements, the energy dependent fission yields were studied with a systematic method.

The fission yields for some products deviate from a linear function more than 10%.

Fast neutron Time-of-Flight spectrometers (HI-13 Tandem)

• Composed of Normal and Abnormal fast neutron TOF spectrometers

• Mainly for fast neutron spectrum measurement, ND measurement(DX and DDX), basic science research, detector calibration and other applications

20

• Combined with the 5-40 MeV neutrons produced by the HI-13 Tandem accelerator.

Secondary neutron DX and DDX measurement

With the Normal and Abnormal fast neutron TOF spectrometer and the deuterium and tritium gas target. Many of the secondary neutron DX and DDX data were measured.

En	Samples
14 MeV	C, ²³⁸ U, D, ²⁰⁹ Bi, ^{6,7} Li, Zr,
	Al
6 MeV	Be
8 MeV	^{6,7} Li、Fe、Be、D
10 MeV	^{6,7} Li, Be, V, ²³⁸ U, ²⁰⁹ Bi, Fe, C
20-40	Be, C, ²⁰⁹ Bi

The abnormal TOF spectrometer was used to eliminate the influence from the breakup source neutrons between 8 and 14 MeV

Secondary neutron DX and DDX measurement

Nuclear data benchmark experimental setup at CIAE

The collimator system

List of measured samples

Sample	Sample size/cm	Sample thickness/cm Angle/°		Institute
²³⁸ U	10×10	5	45、135	
Ве	10 ×10	5、11	60、12 0	
^{nat} Fe	10×10	5、10	60、120	
Nb	10×10	5、10	60、12 0	CIAE
H ₂ O	Ф13	5.2	60	
DE	Ф13	6	60	
F L	10 ×10	5	45	
Pb	Ф13	5	60	
Pb-Bi	Ф13	5	60	CIAE-INEST
ThO ₂	Ф13	5.4、10.8	60、12 0	CIAE-SINAP

Collaboration between CIAE-IMP for ADS purpose

sample	dimension	Angle
Polyethylene	10cm*10cm*5cm	60
Gallium	10cm*10cm*5cm, 10cm*10cm*10cm,	60,120
	Ø13cm*3.2cm, Ø13cm*6.4cm	
Tungsten(block)	$10 \text{cm} \times 10 \text{cm} \times 3.6 \text{cm}, 10 \text{cm} \times 10 \text{cm} \times 7.2 \text{cm}$	60,120
Tungsten(Granular)	9.8*9.9*7.2cm, (granular diameter:1mm)	60
Graphite	Φ13*2cm, Φ13*20cm	60,120
SiC	Φ13*2cm, Φ13*20cm	60,120
238U	10cm*10cm*2cm,	60
238U	10cm*10cm*5cm, 10cm*10cm*11cm	60, 120
W+U	W:10cm*10cm*3.5cm, U: 10cm*10cm*2cm	60
W+U+C	W:10cm*10cm*3.5cm, U: 10cm*10cm*2cm	60
	C: 10cm*10cm*2cm	
W+U+C+CH2	W:10cm*10cm*3.5cm, U: 10cm*10cm*2cm	60
	C: 10cm*10cm*2cm, CH2: 10cm*10cm*2cm	
U+C	U: 10cm*10cm*5cm, C: 10cm*10cm*10cm	60
U+C+CH2	U: 10cm*10cm*5cm, C: 10cm*10cm*10cm	60
	CH2: 10cm*10cm*10 cm	20

14MeV n + Polyethylene, Graphite, SiC

HPGe detector array for high resolution gamma spectroscopy

• 6 Clover and 6 HPGe detectors

• Mainly used for (n, 2nγ) and (n, n'γ) measurement

Gamma production CS measurement

^{nat}Fe(n,n' γ) and ^{235,238}U(n,2n γ) have been carried out

The measured results for ⁵⁶Fe(n,n' γ)

(n,2n) measurement with HeSAN

HeSAN (氦-3): He-3 SphericAl Neutron Detector Array

110 He-3 counters uniformly distributed in a spherical PE moderator

- Insensitive to gamma rays
- Detection efficiency acceptable (~33% for 252Cf source)
- Spherical design makes the efficiency more independent on energy

Experimental setup:

First measurement on 93Nb(n,2n) shows HeSAN work well

(n,g) reaction cross section measurement with C6D6 system at CSNS Back-n

First experiment on 169Tm(n,g) reaction finished in April,2018

Gamma Total Absorption Facility(GTAF) for neutron capture cross section measurement

CARR ISOL for decay data measurement

Mass resolution > 400

• For short life decay data measurement

Summary

- Nuclear data needs increase in China in recent years, particularly driven by some large new nuclear energy system projects.
- Substantial progress on nuclear data measurement has been made in recent years.
- Some new facilities such as CSNS are finished, these facilities will greatly improve the capability of the nuclear data measurement in China in the near future

INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY

May 19 - 24, 2019 · Beijing, China

http://www.nd2019.org

When and Where?

Welcome to Beijing in 2019!

Thank you for your attention