

26th International Semin Interaction of Neutron wit

Cold neutron source for IBR-2 reactor on pelletized mesitylene beads

anucle1

IBR-2 reactor

IBR-2 3D-mentional model

Modernization 2006 – 2010

 More compact reactor core (78-69 fuel assembly);
New movable safety shield
New reactor vessel;
Fuel tips with hole on the center (burning fuel rise up at 1.5 times);

6. Created a cold neutron source

Main moveable reflector
Auxillary moveable reflector
Fuel assembly
Stationary reflector
Cold moderators
Emergency system
Water moderators
Control rods

Fuel rods

Solid methane neutron moderator at IBR-2 reactor (1994-2000)

Some parameters of cold neutrons		
Wavelength, Å	4 – 29	
Energy, eV	$5 \cdot 10^{-3} \div 10^{-4}$	
Speed, m/s	$9,8\cdot10^2 \div 1,4\cdot10^2$	

What we can get?

- increase a cold neutron flux on a sample (using a mirror neutron guide);
- registration a diffraction peak in a high wavelength region;
- registration a big molecular groups, biological objects, tomographic research;
- fundamental research (search for electric dipole moment, neutron interaction...)

Some examples of researches with cold neutron flux at HRFD and DN 2 instruments

communication 2000 г. P3-2000-220

Moderator's substance

- recombination reaction inside a substance under by radiation (local temperature jump, non stable of neutron spectrum);
- formation of a radiolytic hydrogen (can destroy a chamber on warming up mode (rise up the temperature inside the chamber to 70 K every 4-5 hours));
- formation of high molecular, high-boiling products which are difficult to remove from the chamber (after 270 MWh 1/3 of chamber were full up of non removable substance)

Mesitylene m-xylene mixture – better substance for IBR-2 cold moderator

- T boiling 437 K
- T melting 227 K
- D pellets 3,5-3,9 mm
- T operation 10 150 K

Why we use a pelletized mesitylene moderator?

Advantages to using mesitylene in pelletized form

- neccenobinativationa celactions icin ana sits; tence under by radiation (local temperature jump, non stable of (seable meptecorusp); ctrum)
- for the bit ing eaclined with the observe of the obse
- Edifect ticomolohigationolleighab,oiliglg-poiling to robate the standard of the s
- a wide range of operating temperatures allows to shift the peak of the neutron flux to the region of large or small wavelengths (10 150K)
- unloading in solid phase let use a moderator "non limit time"

Principle scheme of operating cold neutron source on IBR-2 reactor

Cold neutron source for IBR-2 reactor

Main steps to creating a cold neutron source on combine moderator (CM201) example

Steps

- Configuration of head part of moderator
- Infrastructure communication (water circulation, cooling pipe connection...)
- Investigation of operation parameters of equipment for loading a pellets by transfer line from batcher to moderator
- Calculation and creation a cooling system

CM 201 – moderator for 1, 4-6, 9 neutron beam

- 1 KOLKHIDA (a polarized neutron spectrometer and a polarized nuclear target facility)
- 4 YuMO (spectrometer of small-angle neutron scattering)
- 5 HRFD (High Resolution Fourier Diffractometer)

6 – DN-6 (neutron spectrometer for determination of a crystal and magnetic structure by high pressure)

9 – REFLEX (reflectometer of polarized neutrons)

Optimal variant of head part of moderator CM 201

Infrastructure communications

Infrastructure connections for CM 201 moderator

*Patent for invention by JINR

- No local heat gain;
- No steps;
- Compact size and easy

operation;

- No weld (plug construction);
- Easy and cheaply
 - manufacturing;

Direction of pellets mo

We use cryogenic plug connection in our cooling system

Transfer line and technical equipment of CM 201 moderator

Line parameters

- Total length 18,5 m;
- Four rises section (from 130⁰ to 52⁰;
- 5 turns (from 2^o to 90^o);
- 2 section with pressure sensor;
- Pito tube 1;

Step ungi

Drive shaft

Transfer line

Full scale r

Main goal temperature

tor system

by cryogenic ent parameters.

Main parameters for loading a pellets without congestion and destruction

Heat gains into cryogenic system

Cooling system for IBR-2 reactor cold neutron source

VP1

Equipment of system

- Refrigerator 700/20
- Refrigerator 1200/10
- Heat exchanger for CM 201 with one gas blower
- Heat exchanger for CM 202/CM203 with • two gas blowers
- Manifold
- Cryogenic pipes and plug connections
- Measurement and vacuum equipment

Schema of helium distribution

Cryogenic System Scheme for Cold Neutron Source for IBR-2 Reactor

Cryogenic area

Some dates of source cooling system

Results of combine moderator CM 202 operation

Characteristics and results of operation CM 202		
Moderating materials	mesitylene + m-xylene 70% 30%	
Volume of the cold chamber	1 L (30000 pellets)	
Cooling substance	helium	
Operating time	513 MW/h (11 days)	
Operation mode: • "warm" • "cold"	300 К 20-150 К	
Neutron flux on the surface	10 ¹² n/cm2/sec	
Gain factor	up to 14 (7Å)	
Spectrum degradation	< 10%	

Thank you for your attention!

