











**KRN** 



Tagged neutron method as a tool for nuclear reaction studies and elemental analysis – the TANGRA project

## Yuri Kopatch Joint Institute for Nuclear Research

## for the TANGRA collaboration

Yu.N.Kopatch, V.M.Bystritsky, D.N.Grozdanov, N.A.Fedorov, I.N.Ruskov, V.R. Skoy, T.Yu.Tretyakova, A.O.Zontikov, D.Wang, F.Aliev, Yu.N.Rogov, M.G.Sapozhnikov, N.A.Gundorin, C.Hramco, V.N.Shvetsov, A.Kumar, A.Gandhi, S.Dabylova, Yu.N.Barmakov, E.P.Bogolyubov, V.I.Ryzhkov, D.I.Yurkov

1



#### LHEP JAB3













# TANGRA project <u>TAgged Neutrons and Ga</u>mma-<u>RA</u>ys

Participants:

- 1. Frank Laboratory of Neutron Physics, JINR, Dubna, Russia
- 2. Veksler and Baldin Laboratory of High Energy Physics, JINR, Dubna, Russia
- 3. Dzhelepov Laboratory of Nuclear Problems, JINR, Dubna, Russia
- 4. Laboratory of Radiation Biology, JINR, Dubna, Russia
- 5. Lomonosov Moscow State University, SINP, Moscow, Russia.
- 6. N.L. Dukhov All-Russian Automation Research Institute, Moscow, Russia.
- 7. Laboratory for Nuclear Analytical Methods, Institute Ruđer Bošković, Zagreb, Croatia
- 8. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
- 9. Banaras Hindu University, Varanasi, India

10.University of Alexandria, Egypt

2





















# Aims of the project

#### 1. Basic research

Using tagged neutron beams for experimental investigations in the field of fundamental nuclear physics

- Investigation of reactions (n,n' $\gamma$ ) using the tagged neutrons method.
- Investigation of reactions (n,2n`), (n,n`) using the tagged neutron method.

## 2. Applied research

Development of the tagged neutron method for identification of a wider range of elements and substances

• Development of a database on reaction cross sections for interaction of neutrons with energy 14.1 MeV with nuclei and on the characteristic gamma lines

• Development of methods to study the elemental composition of soils and minerals to determine the content of various elements

## 3. Methodical research

• Development of algorithms for the analysis of experimental data coming from the detectors of neutron and gamma radiation.

• Design and construction of detectors and electronics with improved timing and energy characteristics for use in intense neutron fields.

















## Main components of the TANGRA setup

#### d + t $\rightarrow$ <sup>4</sup>He (3.5MeV) + n (14.1MeV)



- Neutron generator with a position sensitive detector of α-particles
- 2. Shielding (optional)
- Detectors of γ-rays / neutrons

4

4. Sample



















# The Tagged Neutron Method – TNM

#### d + t $\rightarrow$ <sup>4</sup>He (3.5MeV) + n (14.1MeV)



## **Neutron generator ING-27**

#### Measured quantities:

- Pulse height (particle energy)
- Time-of-flight (n-gamma separation, background rejection)
- Pulse shape (n-gamma separation)
- Angle of emission of the incident neutron and secondary particle (neutron or gamma)



















# Neutron generator ING-27





#### Produced by N.L. Dukhov All-Russian Automation Research Institute

Maximal intensity Neutron energy Neutron radiation mode Power supply Maximum power consumption Dimentions Weight Operation time

Detector of  $\alpha$ -particles

~5x10<sup>7</sup> c<sup>-1</sup> 14.1 M9B steady-state 200±5 V 40 W 130x279x227 mm 8 kg ~1000 hours

# 9, 64 or 256-pixel position sensitive silicon detector

6



# Main advantages of the Tagged Neutron Method

- Possibility to determine precisely the number of neutrons hitting the target: each neutron is "tagged" by the  $\alpha$ -detector. • Information about space and time location of the interaction of the neutron with a target (X,Y-coordinates are given by the pixels of the  $\alpha$ -detector; Z,t-coordinates are defined by the
- time-of-flight)
- Due to the selection of a small space-time volume of interaction (voxel) the contribution of background is significantly reduced
- The method allows to identify different elements and substances using their characteristic gamma-rays



# First commissioning experiment at TANGRA Measurement of angular distribution of 4.43 MeV $\gamma$ -rays from 12C(n,n' $\gamma$ ) reaction

1.8

1.6

1.4

0.6

0.4

#### **Reported at ISINN23**



T.N.P















 $w \sim 1 + a \cdot \cos^2 \theta - b \cdot \cos^4 \theta$ 

a=2.47±0.1 b=2.04 ±0.12 Anderson et al: a=1.75±0.18 b=1.20 ±0.31

8

0.5

Our fit

**ENDF/B - VII** 

Yu.N. Kopatch et al, Reported at ISINN-23, Dubna (2015) V. M. Bystritsky et al, Physics of Particles and Nuclei Letters (2016) -0.5

0 cos(θ)



C.Hramco et al, ISINN-24 Dubna, May 24–27, 2016, JINR, E3-2017-8, p. 157

9

## Applied research at TANGRA Determination of the relative humidity of coke (fuel) Reported at ISINN24



D.Grozdanov et al., Physics of Particles and Nuclei Letters (2017)



## ADCM-16











16/32/64-channel digitizers, in the form of one or several PCI-E cards.

#### Sampling frequency

100 or 66 MHz

The digitized signals are transmitted via the PCI-E bus in the computer's memory, where all the data processing and storage takes place.

Maximal load of the system is ~  $10^5$  events per second

Yu.N.Kopatch, Ininn26, May 28-June 1, 2018, Xi'an, China





















## Methodical works Development of digital electronics and data acquisition systems (II)

**32-channel digital signal recorder – modular device consisting of:** 

1. Mini crate

- 2. One control plate



3. Up to 8 working plates

- Each working plate contains 4 independent digitizer channels, 11 bit, 200 Mhz.
- Optionally can be replaces by a high resolution 2-channel plate, 16 bit, 100 Mhz
- Input signal range: +/- 1 V
- Connection to PC through high speed USB-3 port. Maximal data rate up to 190 Mbytes/sec
- Maximal load of the system: ~10<sup>5</sup> events/sec for each channel



## **Methodical works**

## Construction of a silicon two-dimensional positionsensitive fast neutron detector for beam profile measurement

# 2D detector, made of 4 double sided stripped position sensitive Si detectors

Each Si detector consists of 32x32 strips ~1.8 mm thick Size of one detector: 60x60mmm Total size: 120x120 mm Thickness: 300 mkm Neutron detection efficiency: ~0.8% At this stage each 8 strips are grouped together forming a metrix 9x9 with a pixel size of ~1 5x1 5 cm





## Methodical works Measurements of tagged neutron beams profiles



























R



Basic research at TANGRA

Measurement of the angular distribution and partial cross

sections of the gamma-rays from inelastic scattering of 14.1 MeV

neutrons on nuclei

Main points of interest:

- For some nuclei/gamma transitions the gamma-ray anisotropy hasn't been measured at all
- Investigate possible differences between neutron and proton scattering
- Comprehensive theory of angular correlations of gamma-rays from (nn' $\gamma$ ) reactions doesn't exist

 Angular anisotropy of the emitted gamma-rays has to be taken into account if the tagged neutron method is used for elemental analysis





## FLNP

















Two types of experimental setup for measuring gamma-ray angular correlations

Stage I: 22 Nal detectors

Stage II: 18 BGO detectors









LHEP JOB3



Size - 100x100x50 mm

Stage I:

Pb, C, Fe, Bi, Al, SiO<sub>2</sub>, N

Placed at a distance of ~850 mm from ING-27

Covered one pixel of the tagged neutron beam

Two types of experimental setup for measuring gamma-ray angular correlations

## Samples

### Stage II:

Ti, Mg, Ca, Zn, Ni, Sn, KCl, NaCl, MnO<sub>2</sub>

**Distance – 125 mm from ING-27** 

Size – optimized using Monte Carlo calculations with an aim to cover maximal number of tagged neutron beams and minimize the correction for gamma self-absorption (see report of N.Fedorov)





# FINP

















## Energy and time-of-flight spectra from BGO for Ti sample



Yu.N.Kopatch, Ininn26, May 28-June 1, 2018, Xi'an, China









## Angular distributions for two gamma lines of Ti

Angular distribution is determined as a normalized count rate for each combination of detector – tagged neutron beam

The measured angular correlation is corrected for the detector efficiency/solid angle and absorption of the gamma-rays in the target (see report of N.Fedorov)

The distributions are fitted by the  $2^{nd}$  and  $4^{th}$  order Legendre polynomials with parameters  $a_2$  and  $a_4$ .















Measurements of gamma-rays from inelastic scattering of 14.1

**MeV neutrons on nuclei using HPGe detector** 

BGO detectors

HPGe detector with shielding













## **Future plans**

Development of theoretical models describing angular correlations in the inelastic scattering on 14.1 MeV neutrons on nuclei

Calculation of the angular distribution of  $\gamma$ -quanta in the Compound Nucleus framework



N.Fedorov, reported at ISINN-25, May 22-26 2017, Dubna

• N.Fedorov, Master Thesis, 2017



# DOB3













## **Future plans**

Investigation of the (n,2n`) and (n,n`) – reactions using the tagged neutron method



Investigation of the reaction  ${}^{10}B(n,2n){}^{9}B \rightarrow p + {}^{8}Be$ .

Aim: Obtaining information about the low-lying levels of the unstable nucleus <sup>9</sup>B

<u>Method:</u> Measurement of the energies of two neutrons using time of flight and calculation of missing-mass spectrum for <sup>9</sup>B.



Using high efficiency DEMON detectors with n-gamma separation capability







# Summary

• The project aimed at the experimental investigations in the field of basic and applied nuclear physics using tagged neutron beam is being realized at JINR Dubna

• Collecting and processing of the experimental data on inelastic scattering on 14.1 MeV neutrons on nuclei is currently taking place at the TANGRA experimental facility.

## Future tasks to do:

1. Conduction of measurements of characteristic gammaspectra for various elements. Creation of data-base for element identification.

2. Measuring the cross-sections of (n,2n), (n,n') reactions on important for nuclear science isotopes.

3. Development of the technique for determining the elemental composition of soils and minerals.

# Thank you for your attention

FLNP

ЛФВЭ

×.

۷

RB

NRNE

