
SOS@PULSTAR   ISINN-26, Xi’an, China, 2018 

Systematic and Operational 

Studies  apparatus 

SOS@PULSTAR  

E. Korobkina 

 on behave of EDM@SNS 

collaboration 

1 

  



ISINN-26, Xi’an, China, 2018 SOS@PULSTAR   

nEDM at SNS apparatus’s subsystems   
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• nEDM@SNS project will be measuring 

neutron EDM in cryogenic environment 

• Cryogenic setup allows to reach 

ultimate statistical and systematic 

uncertainties down to 10-28 range  

• The apparatus itself is split into modular 

subsystems: 

• central detector 

• magnetic package 

• He-3 services 

• neutron guide  

• A separate subsystem of the project is a 

smaller cryogenic setup called 

Systematic and Operational Studies at 

PULSTAR  reactor (SOS@PULSTAR).    
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Motivation for SOS apparatus  

3 

Measurement cell 

Detector 

Precession Detection  

Time 

• Traditional nEDM technique: 

• This unique feature provides independent information on potential unknown systematic uncertainties. 

• Requires novel techniques for which detailed studies are required to optimize statistical sensitivity and minimize the system

• The studies don’t require electric field, only magnetic system for spin gymnastic 
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• nEDM@SNS technique: 
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Motivation for SOS apparatus  
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Technical overview 
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Main design objectives :  

•UCN and He-3 simultaneous  

storage in liquid helium at 

temperatures 0.4-0.5K  

•spin manipulations and spin 

detection of He-3  and neutrons in 

homogenous magnetic field with  T2 

>500sec  

•neutron storage >100 sec 

•ability to remove depolarized He-3  
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Summary of design difference 
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•Cool down:    2 weeks (∼ 

4-5 times shorter than 

nEDM).  

SOS SOS 

nEDM nEDM 

•   Cycle time:   ∼ 2-3 

hours (∼ 10 times 

longer then nEDM). 

SOS SOS 

nEDM nEDM 

80% 
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Our scientific program 

•Three key studies related to nEDM@SNS project: 
- geometric phase related studies 

- spin manipulation 

- characterization of experimental cells 
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•Precise measurement of the neutron to shielded 
helion gyromagnetic ratio γ3/γn 

- The ratio  can be determined to  ~ 0.1 ppm level with 1-2 months of 

running 

- Combining with the CODATA 2014 recommended value for  of 13 

ppb, the precision of the value  can thus be improved by a factor of ~ 

2.5. 
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Key measurements 
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• Test of measurement cells: 

-UCN and 3He friendliness (storage and 

polarization times) of FINAL cells 

•Spin manipulation:  
-Development of operational procedures required to 

demonstrate sufficient control of the 3He and neutron spins (for 

both, free spin precession and spin dressing) 

•Geometric phase study: 

-Characterization of the main nEDM systematic effect caused by the 
frequency shift due to interaction of the motional (E × v/c) magnetic 

field with stray field gradients  
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Geometric phase effect study 
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Geometric phase studies 
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•Theoretical studies of the Geometrical phase effect : 

•  Swank, C.M.; Petukhov, A.K.; Golub, R., “Random walks with thermalizing collisions in bounded regions: Physical 
applications valid from the ballistic to diffusive regimes”, Physical Review A, 93, n 6, p 062703 (15 pp.), June 2016. 

•  Golub, R.; Kaufman, C.; Müller, G.; Steyerl, A., “Geometric phases in electric dipole searches with trapped spin-1/2 
particles in general fields and measurement cells of arbitrary shape with smooth or rough walls,” Physical Review 
A, 92, n 6, p 062123 (18 pp.), Dec. 2015. 

•  Pignol, G.; Guigue, M.; Petukhov, A.; Golub, R., “Frequency shifts and relaxation rates for spin-1/2 particles moving 
in electromagnetic fields”, Physical Review A (Atomic, Molecular, and Optical Physics), 92, n 5, p 053407 (8 pp.), 

Nov. 2015. 

•  A. Steyerl, C. Kaufman, G. Müller, S. S. Malik, A. M. Desai and R. Golub, "Calculation of geometric phases in 
electric dipole searches with trapped spin-1/2 particles based on direct solution of the schrödinger equation.," 
Phys. Rev. A, vol. 89:052129, 2014. 

•  C. Swank, A. Petukhov and R. Golub, "Correlation functions for restricted brownian motion from the ballistic 
through to the diffusive regimes," Physics Letters A, vol. 376(34):2319, 2012.  

•G. Pignol, S. Roccia, “Electric-dipol-moment-searches: Re-examination of frequency shifts for particles in traps”; 
Physical Review  A, 84(4):042105(5), 2012 

•C. M. Swank, PhD thesis, North Carolina State University, Raleigh, NC, 2012 

•S.M. Clayton, “Spin relaxation and linear-in-electric-field frequency shift in an arbitrary time-independent 
magnetic field”, Journal  of Magnetic resonance, 211(1):89-95, 2011 

•  A. L. Barabanov, R. Golub and S. K. Lamoreaux, "Electric dipole moment searches: Effect of linear electric field 
frequency shifts induced in confined gases," Phys. Rev. A, vol. 74:052115, 2006. 

•  S. K. Lamoreaux and R. Golub, "Detailed discussion of a linear electric field frequency shift induced in confined 
gases by a magnetic field gradient: Implications for neutron electric-dipole-moment experiments," Phys. Rev. A, vol. 

71:032104, 2005 

•  J. M. Pendlebury et al., "Geometric-phase-induced false electric dipole moment signals for particles in traps," 
Physical Review A, vol. 70:032102, 2004 
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There are 3 ways to measure Correlation function: 

Geometric phase studies 
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Geometric phase  can be calculated using motional correlation 

function  

•via. spin relaxation time T2 

•B2 frequency shift. 

•via. spin relaxation time T1 
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Key measurements: correlation function 
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• To compensate for only 80% of He-3 polarization : use higher He-3 
concentrations  xpol 3 ∼ 10−8 to 10−7. 

Note that for x
pol 3 

<10−7 

the mean-free-path of the 
3

He remains essentially unchanged 

since it is still in the regime where scattering with phonons in the superfluid helium 

dominates. 

3He UCN 3He 
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Key measurements 
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• Test of measurement cells: 

-UCN and 3He friendliness (storage and 

polarization times) of FINAL cells 

•Spin manipulation:  
-Development of operational procedures required to 

demonstrate sufficient control of the 3He and neutron spins (for 

both, free spin precession and spin dressing) 

•Correlation function: 

-Characterization of the main nEDM systematic effect caused by the 
frequency shift due to interaction of the motional (E × v/c) magnetic 

field with stray field gradients  

UCN 3He 
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Spin manipulation 

• free precession: 
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• need to reproducibly set initial phase to 1 mrad (or 0.06◦) for each 

measurement 

• pseudomagnetic frequency shift: size proportional to the tipping angle  

Precession 

Detection  

Time 

π/2 γ3=1.1γn 

<γ3>eff=γn 

• critical dressing: 

Precession 

Detection  

Time 

π/2 

Dressing RF pulses 

• Spin dressing have beed done separately with neutrons or He-3, never 

with two species together 

•Need scanning of large parameter space 
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Spin manipulation 

•Critical dressing: use light scintillation technique 

• Free precession :  use SQUID and light 

scintillation detectors 

- to achieve the 0.06◦ precision goal : 

repeated measurements of φ0  and use of  

an intermediate xpol 3 ∼ 10
−9

. 

- rough estimate of the required 

measurement time  about a month for 

one parameter scan 

•Light collection system is designed at  

Oak Ridge (the same as nEDM@SNS)  

•Serpentine  fiber arrangement to 

reduce heat leak into the cell 
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Key measurements 
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• Test of measurement cells: 

-UCN and 3He friendliness (storage and 

polarization times) of FINAL cells 

•Spin manipulation:  
-Development of operational procedures required to 

demonstrate sufficient control of the 3He and neutron spins (for 

both, free spin precession and spin dressing) 

•Correlation function: 

-Characterization of the main nEDM systematic effect caused by the 
frequency shift due to interaction of the motional (E × v/c) magnetic 

field with stray field gradients  
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Cell characterization 

• Full-sized measurement cells at 

conditions close to operating:   

• UCN storage time 

•  UCN&He-3 Depolarization 

properties 

•  He-3 Correlation function 

  

23 
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SOS apparatus commissioning  status:  
non-magnetic cryostat  and Dilution Refrigerator 

Temperature of the mixing chamber vs heater 

power 



SOS@PULSTAR   ISINN-26, Xi’an, China, 2018 
25 

SOS apparatus commissioning  status: He-4 system  
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SOS apparatus commissioning  status: measurement cell  
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SOS apparatus commissioning  status: He-4 system  
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• We have working, optimized MEOP set-up  
• We can polarize He-3 within 20 min from cold 

start. 
• We can polarize He-3 within hour after re-

filling the cell. 

SOS apparatus commissioning  status: He-3 polarization  
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SOS apparatus commissioning  status: He-3 removal  

•  He-3 will be moved to buffer cell/evaporator by 

phonon wind 

• Our COMSOL model shows that with 1 mW of heat 

power the concentration can be done within 20 min 

Measurement cell 

Buffer cell/evaporator 

• From evaporator He-3 will be pumped by a 

Charcoal Pump thermally linked to  4K 

• the pumping time is estimated to be 2-3 hours  

• Pump capacity has been measured at least 100 

STP liters of He 

• The pumping speed will be measured soon 

Pump 

Pump capacity at 

is least 100 STP liters 

of He 
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SOS apparatus commissioning  status: SQUID and NMR 

electronic  

• We have a smaller  Blue cryostat with SQUID 
installed to develop operational technique and 
noise suppression  

• Main goal: to test effect of optical decoupling 
and power isolating transformer on SQUID 
noise 

• After this cool down, we plan to move SQUID 
to the new dewar 
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Magnetic coils design: internal coils 

•Main challenge - compact coils with 

several side penetrations, 30 mG 

field  

•B0 , Gradient and 

RF coils 

•Present design T2 
about 2000 s 

60 cm 

40 cm 

•Relatively large homogeneous 

field region  with T2 >500 sec 
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Magnetic coils design: external coils and shield 

Field from Cos θ vs Fourier Coefficient Minimization (Fourier 
Coil) 

(credit C.M. Swank, Caltech) 

Cos θ 
Fourier Coil 
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Magnetic coils design: external coils and shield 

Fourier minimization without conditional 
density 

Fourier minimization with conditional 
density 

(credit C.M. Swank, Caltech) 
T2 is 4 times longer 
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Summary 

•Systematic and Operational Study apparatus will allow us to do spin  

manipulations/studies with both, polarized  ultra-cold neutrons and He-3 atoms, 

dissolved in LHe at 300-600 mK. 

•SOS@PULSTAR experimental program: 

- Correlation function - first experimental studies 

- Spin manipulation: first spin dressing simultaneously of both, neutron and 3He 

- UCN storage Cell characterization 

-  Measure γ3/γn. ratio at ppm level 

•At present apparatus is under step-by-step design and commissioning of 

components: 

- MEOP fully operational, produces 80% 3He polarisation 

- Development completed: Kapton bellow, Kapton seal on PEEK flanges, 

UCN/Vacuum window 10 mkm thick 

- Developed new methods to design compact magnetic coils (D) with  

homogeneous magnetic field region T2 > 2000 sec for D/2 diameter inside the 

coil 

36 
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