Manifestations of pear-shaped clusters in collinear cluster tri-partition (CCT)

<u>Yu.V. Pyatkov</u>^{1,2}, D.V. Kamanin², A.A. Alexandrov², I.A. Alexandrova², Z.I. Goryainova², V. Malaza³, E.A. Kuznetsova², A.O. Strekalovsky², O.V. Strekalovsky² and V.E. Zhuchko²

National Nuclear Research University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia

Joint Institute for Nuclear Research, Dubna, Russia

University of Stellenbosch, Faculty of Military Science, Military Academy, Saldanha 7395, South Africa

Experimental background

Collinear cluster tri-partition (CCT) – status quo

Our experimental background

Mtt & Mte, Neutrons & Nuclear charge

New modified experimental methodic

New experimental approach

$$E = E_{det} + R(M, E), \tag{1}$$

PHD:

$$R(M,E) = \frac{\lambda \cdot E}{1 + \varphi \cdot \frac{E}{M^2}} + \alpha \cdot ME + \beta \cdot E , \quad (2)$$

$$E = \frac{M \cdot V^2}{1.9297} , \quad (3)$$

Combining equation (1), (2) and (3), we obtain:

$$G = \frac{MV^2}{k} - \left[E_{det} + \frac{\lambda \cdot \frac{MV}{k}}{1 + \varphi \cdot \frac{V^2}{Mk}} + \alpha \cdot \frac{M^2 V^2}{k} + \beta \cdot \frac{MV^2}{k}\right] = 0,$$

where k = 1.9297.

(

min $F = [(\langle ML_T \rangle - \langle ML \rangle)^2 + (\langle MH_T \rangle - \langle MH \rangle)^2] + \mu \sum_{M_{TE}} \frac{(Y(M_{TE}) - Y_T(M_{TE}))^2}{Y(M_{TE})}$

PD

$$\Delta t_p = \gamma \frac{M^{1/6} E^{1/2}}{2}$$

A new off-line method of time-pickoff "sewing-parabola" New results

Comparison of the results from Ex1 (new) and Ex2

M,(u)

Three different experiments but similar structures

Parameters of the structures observed					
Str	Missed	Heavy magic	Number of	Experiments	
NՉ	fragment	core	neutrons		
1	62Cr	190W	116	Ex1	_
2	48, 50, 54Ca	198Pt, 202Hg,	120, 122,	Ex1 & Ex2	
		204Pt	124		new
3	44S	208Pb	126		
4	40Si	212Po	128	Ex1 & Ex3	
5	36S	216Po	132]	K
6	34Si (N=20)	218Po	134	Ex1	

Discussion

Deformed magic core causes the effect

Heavy magic	Number of		
core	neutrons		
190W	116		
198Pt, 202Hg,	120, 122,		
204Pt	124		
208Pb	126		
212Po	128		
216Po	132		
218Po	134		

S. Aberg, H. Flacard, W. Nazarewicz, Annu. Rev. Nucl. Part. Sci. 1990.40: 439-527

L. P. Gaffney, P. A. Butler, M. Scheck et al., "Studies of pear-shaped nuclei using accelerated radioactive beams", Nature V497 (2013) "Strong octupole correlations leading to pear shapes can arise when nucleons near the Fermi surface occupy states of opposite parity with orbital and total angular momentum differing by 3h. This condition is met for proton number Z≈34, 56 and 88 and neutron number N≈34, 56, 88 and 134. The largest array of evidence for reflection asymmetry is seen at the values of Z≈88 and N≈134".

		_
nagic	Number of neutrons	
	116	
202Hg,	120, 122,	In an
	124	and ce
	126	creatur
	128	
	132	

226R

octupole deformed nucleus the center of mass enter of charge tend to separate. ng a non-zero electric dipole moment.

Presumable prescission shape of the nucleus in the mode under discussion

Yu. V. Pyatkov, V. V. Pashkevich, et al., Nucl. Phys. A 624, 140 (1997).

Energies of the detected fragments in Ex1 and Ex2

PHYSICAL REVIEW C 96, 064606 (2017)

Scission scenario

Ex	Structure	System configuration	System configuration	System configuration
	under	at the exit point	after firstrupture	at the moment of the
	analysis			second rupture
Ex1	Constant missing mass (M ₃)	magic core		\leftarrow $R_{12}\rightarrow\infty$ \rightarrow
Ex2	"Ni-bump"	R ₁₂ ≥23fm L&H magic clusters		$\leftarrow \blacksquare \qquad R_{12} \rightarrow \infty \blacksquare \rightarrow$

EXAMINATION OF EVIDENCE FOR COLLINEAR CLUSTER ...

PHYSICAL REVIEW C 96, 064606 (2017)

TABLE I. Results of the model calculations. Ternary partitions close to the experimental ones and based on magic constituents (marked in bold) are shown in square brackets. See the text for details.

No.	Locus	Nucl. configuration	$R_{12}, {\rm fm}$	$E_{H_{\text{sec}}}$ MeV	E_H , MeV	V_L , cm/ns	$V_{L_{\text{sec}}}, \text{cm/ns}$	V_T , cm/ns
1	w1b	⁷⁰ Ni- ⁴³ S- ¹³⁹ Xe	≼27	71	80.4 ± 1.8	0.7 <mark>1</mark> ± 0.1		2.16 ± 0.06
2	w1c	[⁷⁰ Ni- ³⁹ Si- ¹⁴³ Xe] ⁷⁰ Ni- ³⁹ Si- ¹⁴³ Ba	≼30	58	69.5 ± 2.6	0.68 ± 0.06		2.19 ± 0.13
3	w2b	$[^{70}\text{Ni}-^{38}\text{Si}-^{144}\text{Ba}]$ $^{70}\text{Ni}-^{47}\text{Ar}-^{135}\text{Te}$	≼35		91.4 ± 3.1	1.30 ± 0.06	1.34	1.33 ± 0.22
4	w2c	[⁷² Ni- ⁴⁶ Ar- ¹³⁴ Te] ⁷⁰ Ni- ⁴⁰ S- ¹⁴² Xe	≼35		77.9 ± 1.3	1.36 ± 0.03	1.34	1.31 ± 0.004
5	w3b	[⁷⁰ Ni- ⁴² S- ¹⁴⁰ Xe] ⁷⁰ Ni- ³⁵ Al- ¹⁴⁷ La	≼32	60	76.6 ± 3.1	1.62 ± 0.04		0.78 ± 0.08
6	w3c	[⁷⁰ Ni- ³⁴ Mg- ¹⁴⁸ Ce ⁷⁰ Ni- ²⁶ Ne- ¹⁵⁶ Nd	≤28	52	63.2 ± 2.3	1.68 ± 0.1		0.58 ± 0.05
7	bin, fiss,	[⁷⁰ Ni- ²⁸ Ne- ¹⁵⁴ Nd] ⁷⁰ Ni- ⁵⁰ Ca/ ¹³² Sn			TKE 141 MeV			
		¹⁸² Yb			$F_{\rm NI} = 102 {\rm MeV}$			

Conclusion

Fig. 10. Cluster scheme for the comparison of the lead radioactivity with collinear cluster tri-partition (Yu.V. Pyatkov et al., EPJ A 2010)

Basing on new data we clarify a mechanism of the CCT mode similar to heavy ion radioactivity, namely, octupole deformed magic core plays the same role as magic Pb in the "Lead radioactivity".