Martensitic Phase Transition in Yttrium-Stabilized ZrO₂ Nanopowders by Adsorption of Water

E.B. Asgerov^{1, 2}, A.S. Doroshkevich^{1, 3}, A.I. Beskrovnyy¹

¹Joint Institute for Nuclear Research, Dubna, Russia e-mail: beskr@nf.jinr.ru;

²National Center for Nuclear Research, Baku, Azerbaijan e-mail: <u>elmar.asgerov@gmail.com</u>

³Donetsk Institute for Physics and Engineering named after O.O. Galkin, Kiev, Ukraine e-mail: doroh@jinr.ru

Abstract: The present study was aimed at revealing the influence of the mechanical stress induced by surface absorbed water molecules on the composition of crystalline phases in the $ZrO_2 - 3mol\% Y_2O_3$ – nanoparticles. Neutron diffraction methods have been used to determine the phase transition. The fact of phase-structural $\beta \rightarrow \alpha$ transformation and the simultaneous presence of two polymorphic structural modifications (β is the phase of the tetragonal syngony and α is the phase of monoclinic syngony in nanoscale particles (9 nm)) under normal physical conditions is established by these methods.