TOTAL KINETIC ENERGIES IN ²³²Th(n,F) AND ²³⁸U(n,F)

V.M. Maslov

Joint Institute of Nuclear and Energy Research, 220109, Minsk-Sosny, Republic of Belarus

Local minimum in TKE of fission fragments in ²³²Th(n,F) around ²³²Th(n,nf) threshold was first observed by Goverdovsky et al. in 1988. In 1995 Zoller et al. observed local maxima in TKE in ²³⁸U(n,F) reaction around ²³⁸U(n,xnf) thresholds. These variations are due to prefission (n,xnf) neutrons, which are pronounced in observed cross sections, prompt fission neutron spectra (PFNS) and mass distributions as well. Contribution of the (n,xnf) reaction to the $\sigma_{n,F}$ of ²³²Th(n,F) around E_n ~7 MeV is ~1.5 higher than in case of ²³⁸U(n,F), which is pronounced in TKE also. Partial contributions of (n,xnf) were fixed in [1–3] and seem to reproduce TKE variations. TKE values E_f^{pre} (E_f^{post}) before (after) prompt neutron emission from fission fragments were calculated as

$$E_f^{pre}(E_n) = \sum_{x=0}^{X} E_{fx}^{pre}(E_{nx}) \cdot \sigma_{n,xnf} / \sigma_{n,F}, \qquad E_{nx} = E_n + B_n - \sum_{x=0, 1 \le j \le x}^{X} \left(\left\langle E_{n,xnf}^j \right\rangle + B_x \right).$$

TKE E_f^{post} were de-defined as $E_f^{post} \approx E_f^{pre} (1 - v_{post} / (A - v_{pre})), v_p = v_{post} + v_{pre}$. Components v_{post} and v_{pre} of v_p are defined via v_p and PFNS analysis at $E_n \sim 2-20$ MeV. Assuming $E_f^{pre}(E_n)$ for ^{233-x}Th, ^{238-x}U are similar to those of ²³³Th and ²³⁹U (note TKE of ²³²Th(γ ,F)) we obtained TKE shown on the figure.

TKE shown on the figure is consistent with observed ²³²Th+n and ²³⁸U+n data on cross sections and PFNS. Straight lines are approximations of TKE values for non-emissive fission. The (n,xnf) neutrons influence on TKE values E_f^{pre} and E_f^{post} is much more pronounced in case of ²³²Th(n,F) reaction. That is due to the transition states structure of ²³²Th and competition of ²³²Th(n,n γ) and ²³²Th(n,nf) at E_n ≤6.5 MeV. For both ²³²Th(n,F) and ²³⁸U(n,F) (n,nf) neutrons influence on PFNS at E_n ~6.5 MeV and E_n ~7 MeV are quite different, which is due to the (n,2n) reaction neutrons competition to the (n,nf) reaction.

- 1. V.M. Maslov, Yu.V. Porodzinskij, M. Baba, et al., Phys. Rev., C69, 034607 (2004).
- 2. V.M. Maslov, Physics of Atomic Nuclei, vol. 71, No. 1, 9 (2008).
- 3. V.M. Maslov, Nucl. Phys. A743, 236 (2004).